Ambient Composition Session

Group Leader: Jaclyn Nesbitt (Michigan Technological University - MTU)

Contributors: Maarten Meijer (Eindhoven University of Technology), Louis-Marie Malbec and Gilles Bruneaux (IFPEN), Lyle Pickett (Sandia National Laboratory), Raul Payri (CMT), Tim Bazyn (Caterpillar)

Summary of the Ambient Composition Working Group Session

The focus of the ambient composition working group for the ECN1 Workshop was to examine the different methods of creating the thermodynamic state for the charge gas in experimental apparatuses including combustion vessels and constant pressure flow rigs in the Engine Combustion Network (ECN) under the 'Spray A' test condition. This was accomplished by comparing the different institutions ambient compositions and modeling their impact on autoignition of n-heptane as a diesel fuel surrogate. The slides presented at the workshop are provided, and a brief overview of the comparisons made with the key results outlined here.

First, the four preburn combustion vessels (Sandia, MTU, IFPEN, and Eindhoven) were compared in regards to preburn mixtures used which consist of varying levels of C₂H₂, C₂H₄, H₂, O₂, N₂ and Ar. This comparison was accomplished using a single-zone chemical kinetics model in Cantera interfaced with Matlab with the GRI 3.0 mechanism to compare minor species produced during the preburn and levels at injection. The different cool-down temperature histories of the vessels (heat transfer modeled as convective with a temperature trace being a quadratic exponential decay) were also modeled. The peak preburn temperature of Eindhoven is largest, followed by MTU, Sandia, and IFP. Although MTU and Sandia utilize the same preburn mixture, MTU uses a fan speed seven times that of Sandia which results in a higher peak temperature and a faster rate of cool down. MTU and IFP have similar cool-down rates, with Sandia having the longest cool-down time due to the low fan speed used. These differences (premixed gas mixture and cool-down rate) cause variations in minor species, NO is largest for Eindhoven, followed by MTU, Sandia and IFP due to the temperature trends from the preburn, but in all cases the levels at the time of diesel injection are more than 50 times less than equilibrium levels, with similar trends for NO₂. For OH, this species tracks the temperature-time trace and at injection IFP has the maximum OH (attributed to the largest level of H2 in the preburn mixture), followed by Eindhoven, MTU and Sandia, with these levels being one to two orders of magnitude less than equilibrium values. At equilibrium, for IFP NO in 3030 ppm and OH is 170 ppm, for MTU and Sandia NO is 5100 ppm and OH is 230 ppm, and for Eindhoven NO is 5250 ppm and OH is 240 ppm.

Additionally, for the conditions at injection the four preburn vessels major species (CO_2 , H_2O , Ar, N_2 , and O_2) were compared to the CMT and Caterpillar constant pressure flow rigs which use O_2 and N_2 to achieve the desired 15 percent oxygen conditions for 'Spray A'. Comparison included the major species levels and constant pressure specific heat capacities. Finally, the stoichiometric n-heptane ignition delay was determined using chemical kinetics modeling with a reduced mechanism to compare the influence of ambient compositions major species levels and the different minor species produced during the preburn on autoignition, relative to that of dry air and air plus ideal residuals to simulate EGR. Results showed that the preburn vessels, despite their respective differences in minor species at injection, did not significantly impact the ignition delay of n-heptane. More specifically, the vessel ignition delays were 4% shorter than ideal EGR and 83% longer than dry air. Comparing the preburn and constant pressure vessels major species at fuel injection, the specific heat capacities are similar (spanning 1.13 to 1.21 kJ/kg-K at 900 K), and the variation in ignition delay is within the modeling accuracy. More specifically, when considering major species only, IFP had the shortest ignition delay (0.65 ms), followed by CMT / Caterpillar at 0.69 ms, and the remaining preburn vessels of 0.72 ms. Again, the ignition delay was longer than that of dry air as expected due to the reduction in oxygen level at the 'Spray A' condition. There are however noticeable differences in the peak temperature of nheptane ignition between the different vessels with the Nitrogen / Oxygen constant pressure flow rigs having a peak temperature at 45 K higher than the preburn vessels. Key conclusions are that despite the differences in preburn mixtures and ambient compositions, the ambient charge-gas compositions for the vessels considered show no significant differences in fuel ignition delay at the condition considered or mixture constant pressure specific heat capacity.

Also discussed briefly was a recent *Energy and Fuels* journal publication with a goal of isolating and understanding chemical kinetics effects on the preburn process and autoignition of n-heptane fuel while including minor species and neglecting spray dynamics. The key conclusions can be found in the slides, with the main result being that the combustion vessel with the preburn procedure is an effective tool for studying spray combustion over a range of ambient conditions without concern over the reactive minor species produced by the preburn procedure. The citation is listed below for reference for further review.

Nesbitt, J.E., Johnson, S.E., Pickett, L.M., Siebers, D.L., Lee, S-Y., Naber, J.D., 'Minor Species Production from Lean Premixed Combustion and Their Impact on Autoignition of Diesel Surrogates,' *Energy and Fuels* 25 (3), pp. 926-936, 2011.

Discussion Issues & Questions

The key observation and conclusion from the above and the workshop is that there is no significant effect of ambient composition differences on the specific heat and autoignition delay of n-heptane as a diesel surrogate. There are however noticeable differences in the flame temperatures and the consequences of this are unknown. Further unknown is the potential differences in ignition or combustion duration as a result of these ambient environments. Questions were brought up on if the time-step used in the model influences the results (a consistent time-step was used in all of the modeling, however, there was no sensitivity study undertaken), the influence of other n-heptane stoichiometries in addition to the lambda one case studied here, and if the n-heptane mechanism used influences the results. These questions are continuously being addressed with additional modeling work.

Recommendations & Future Investigation

It is recommended that experimental testing is undertaken to characterize the differences in ambient gas composition between the vessels in regards to major and minor species levels and autoignition delay of the fuel. MTU has conducted some exhaust gas sampling, however this sampling was not in-situ, not in real-time in the vessel, nor under 'Spray-A' conditions. Sandia has tried some measurements of the exhaust gases but found that there are large levels of unburnt hydrocarbons due to the large amount of crevice volumes in the CV (think of the CV as a cube with 6 pistons (access ports) as the crevice volumes). Sampling directly in the CV is difficult but is something that would be useful experimentally and to also validate this simplified chemical kinetics preburn modeling.

The modeling used in this work involved a simplified single-zone model, and using a more detailed two-cell or multi-cell model would improve the accuracy and applicability of the modeling simulations. LLNL expressed some interest in looking into this, but this will be extremely complex to the differing vessel geometries.

Wor	king Group Section:
Am	bient Composition
Leader: Jack	vn Nesbitt. Michigan Tech University
Dr. Jeff	rey Naber, Dr. Seong-Young Lee
Contributing	Institutions: Sandia, Eindhoven, CMT, Caterpillar, IFP, MTU
ECN1 – Works	hop on Spray Combustion, Ventura, CA
	May 13-14, 2011
MichiganTech	ECN1 Workshop – May 13-14, 2011 1

Outline					
 Details of MTU Combustion Vessel 					
 Chemical kinetics reactor modeling of 'Spray A' 15% oxygen conditions for different institutions 					
 Comparison of major species at injection for different vessels 					
 Comparison of preburn environments 					
Cool-down & minor species generation					
 n-Heptane Ignition Delay 					
Influence of major species					
Influence of prebrun					
 Overview of Energy and Fuels Publication 					
 Nesbitt, J.E., Johnson, S.E., Pickett, L.M., Siebers, D.L., Lee, S-Y., Naber, J.D., 'Minor Species Production from Lean Premixed Combustion and Their Impact on Autoignition of Diesel Surrogates', Energy Fuels 25 (3) pp 926-936, 2011. 					
ECN1 Workshop – May 13-14, 2011 2					

Goals & Objectives					
• <u>Goal:</u>					
 Examine test facilities charge gas composition impact on autoignition in comparison to those in an engine through kinetics modeling. 					
• <u>Objectives:</u>					
 Compare major species at injection 					
 Compare preburn environments – cool-downs and minor species produced Sandia / MTU / IFP / Eindhoven 					
Compare n-heptane ignition delay under 'Spray A' conditions					
1. Consider major species at fuel injection					
2. Preburn minor species effects					
ECN1 Workshop – May 13-14, 2011					

'Spray A' Ambient Environment Comparison – Post Preburn							
		'Spray	A' Enviroi V				
Institution	Ambient Composition Method	O2 (%)	N2 (%)	CO2 (%)	H2O (%)	Argon (%)	Mixture Specific Heat (at 900 K) (kJ/kg-K)
Sandia	Preburn, Premixed	15.0	75.1	6.2	3.6		1.16
МТО	Preburn, Premixed	15.0	75.1	6.2	3.6		1.16
IFP	Preburn, Seq. Fill	15.0	71.7	1.7	11.6		1.21
Eindhoven	Preburn, Seq. Fill	15.0	71.2	6.4	3.2	4.2	1.13
СМТ	Flow Rig	15.0	85.0				1.13
Caterpillar	Flow Rig	15.0	85.0				1.13
Ideal EGR – 38.3% (CO2, H2O)		15.0	77.7	3.8	3.5		1.16
Dry Air		21.0	78.1			0.9	1.12
Modified Preburn HCR (Match Diesel R = 1.85)*		15.0	75.3	6.1	3.6		1.16
*Johnson, S.; Nesbitt, J.; Lee, SY.; Naber, J. D. Journal of KONES, Powertrain and Transport 2009, 16 (2), P2-00-2.					, 16 (2), P2-00-2.		
MichiganTee	ECN1 Wo	rkshop –	May 13-1	4, 2011			10

'Spray A' Ambient Composition Environment Comparison – Preburn Mixture								
Institution	Ambient Composition Method	Pre C2H2 (%)	C2H4 (%)	cture Cor H2 (%)	nparison O2 (%)	(Volume N2 (%)	Argon (%)	T _{adiabatic} (U,V) (K)
Sandia	Preburn, Premixed	3.06		0.50	22.63	73.82		1927
MTU	Preburn, Premixed	3.06		0.50	22.63	73.82		1933
IFP	Preburn, Sequential Fill		0.816	9.39	21.43	68.36		1772
Eindhoven	Preburn, Sequential Fill	3.15			22.64	70.07	4.14	1946
Adiabatic flame temperature calculated for initial temperature and pressure to match core density of 'Spray A' of 22.8 kg/m ³								

Preburn Modeling Results– Conditions at 900 K for Fuel Injection						
	Sandia	MTU	IFP	Eindhoven		
Time (S) Relative to Peak Cool-Down Temp	2.15	0.95	0.55	1.68		
Pressure (MPa)	5.81	5.82	6.13	5.71		
NO (PPM)	11.24	59.14	0.11	96.72		
NO2 (PPM)	2.47	9.64	0.02	16.66		
ОН (РРВ)	3.78	5.24	14.34	3.87		
MichiganTech	ECN1 Works	hop – May 13-14, 2	011	17		

Autoignition Modeling Results – Influence of Preburn						
	Sandia	MTU	IFP	Eindhoven	Air Plus Ideal Residuals (38.3%) – 15% O2	Dry Air
n-Heptane Ignition Delay (ms)	0.69	0.66	0.68	0.67	0.71	0.37
Peak Temperature (K)	2302	2302	2307	2320	2326	2707
 n-Heptane ignition delay at spray A conditions (900 K) No variation in ignition delay as result of preburn CV ignition delay 4% shorter than ideal EGR (15% O₂) CV ignition delay 83% longer than dry air (21% O₂) 						

l

ECN1 Workshop – May 13-14, 2011

21

Conclusions
Major Species Comparison
 Similar specific heats
Preburn Comparison
 Peak Temperature, NO and NO2 at Injection: Eindhoven , MTU > Sandia > IFP
 OH at Injection: IFP > MTU > Eindhoven > Sandia
 Ignition Delay Comparison
 Major Species Consideration: no significant variation in n- heptane ignition delay.
 Preburn Consideration: no variation in ignition delay due to minor species from preburn
• CV Ignition delay 4% shorter than Ideal EGR (15% O2)
 CV Ignition Delay 83% longer than dry air
ECN1 Workshop – May 13-14, 2011 22

Summary, Recommendations & Further Investigation Required

• Summary / Recommendations

- No significant effect of ambient composition differences on specific heat and ignition delay.
- Although preburn mixtures and cool-down histories are different which yield differing minor species, this does not yield any significant impact on autoignition of n-heptane as a diesel surrogate.

• Further Investigation Required / Guidelines

- Consequences of differences in flame temperature due to different compositions.
- Experimental measurement of exhaust gas and species to validate modeling and further compare the vessels
 - If differences are significant relative to what was predicted by the model, further assessment of the mixtures used will need to be undertaken to standardize the preburn mixture to ensure consistencies for spray and combustion studies.

MichiganTech

ECN1 Workshop – May 13-14, 2011

26