Summary of Spray A modeling session

The primary objective of the Spray A modeling session was for different modelers to use their best practices in matching the spray A non-reacting data. The non-reacting data used for validation included liquid spray penetration vs. time, vapor penetration vs. time, mixture fraction vs. radial position at a given time, location of vapor and liquid boundaries at different times. Four different codes were used namely: CONVERGE (ANL), KIVA-3V (UW), OpenFOAM (Polimi) and FLUENT (UNSW). In addition, 1D correlations developed at Sandia were used to predict vapor penetration and mixture-fraction distribution.

The group leaders of each modeling group gave a short presentation of their modeling approach and numerical parameters used. All the simulation approaches adopted the Lagrangian approach for the spray modeling.

The group coordinator then summarized all results from different research groups. Parametric studies were performed to quantify the influence of grid size, time-step size, and turbulence models on liquid and vapor penetration vs. time. It should be noted that the definition of liquid length and vapor penetration was different for various modeling approaches. Different turbulence models tested included RANS (standard k-ε, realizable k-ε, and RNG k-ε) and LES models (such as Smagorinsky and dynamic viscosity). Further, in order to facilitate apples-to-apples comparison, simulations with same minimum grid size, similar time-step size, models, and model constants were performed with CONVERGE, OpenFOAM, and FLUENT.

Conclusions

1) **Liquid penetration:** The quasi-steady liquid length was well predicted within 3-4% accuracy by all the models despite differences in modeling approaches and definitions. Liquid spray boundaries were well captured by ANL and Polimi models. However, initial transience was not well captured by any of the modeling approaches.

2) **Vapor penetration:** Vapor penetration was fairly well captured by all the simulations, UNSW probably doing the best job. In addition, ANL and Polimi were able to capture the location of vapor boundaries very well at 0.5 and 1ms. However, at 1.5ms vapor penetration is underpredicted, consequently, spray dispersion is overpredicted.

3) **Mixture fraction distribution:** Sandia correlations and modeling results from ANL and Polimi captured the Gaussian mixture fraction trends well. At certain instants though the predictions were beyond the experimental error bars.

4) **Effect of grid size:** Simulation results are not grid independent for the grid size range studied. Spray and vapor penetration increase with a decrease in grid size for the RANS models.
5) **Effect of time-step size:** Liquid and vapor penetration results from ANL were time-step independent. Vapor penetration results from Polimi were time-step independent, however, liquid spray penetration results were not.

6) **Effect of turbulence model:** Turbulence models had pronounced effects on vapor penetration while effect on liquid spray penetration was negligible. The best vapor penetration results were predicted by the RNG k-ε model using CONVERGE and realizable k-ε model using OpenFOAM. Dynamic viscosity based LES results from UW for spray penetration seemed to be grid independent. Increasingly detailed flow structures were observed with smaller grid sizes using LES models from both UW and ANL.

7) Despite differences in models, grids, and modeling approaches, different best practice approaches were able to capture experimental trends fairly well, which is not surprising. Next, a set of simulations were performed with same minimum grid size, similar time-step size, models, and model constants. Liquid and vapor penetration results revealed significant differences between ANL, Polimi, and UNSW simulations. The reasons for these differences warrant further investigations.

Discussion and Recommendations

1) **Liquid penetration:** Liquid length fluctuations can be reduced by injecting higher number of computational parcels. Initial transience can be better reproduced with an accurate ROI, accounting for the nozzle flow and needle lift effects, and accurate discharge coefficient values. The influence of spray model constants on this initial transience also needs to be characterized. Spray breakup model constants perhaps have the most significant influence on spray penetration.

2) **Vapor penetration:** Modelers need to focus on the early and late parts of vapor penetration profiles where discrepancy with experimental data is the largest. This may improve the spray dispersion predictions also.

3) **Mixture fraction distribution:** This is a difficult parameter to match. Future studies should focus on matching the mixture fraction decay along the centerline also.

4) **Full 3-D simulations will probably be more accurate than 2-D simulations.**

5) **The location of the modeled injector exit in the mesh should be stated by modelers (e.g. are drops injected from the center of a cell or from a cell vertex?).**

6) **LES models need to be improved in order to better match vapor penetration and distribution.**

7) The minimum grid size should be refined to 0.125mm to observe if grid independence on parameters like liquid and vapor penetration.

Future work

1) The major outcome of this session was to ensure that the next set of simulations are presented with standardized definitions of parameters like liquid and vapor penetration. Please refer to the summary sheet for the n-heptane baseline modeling session on recommendations for these definitions.

2) **Spray A data was under one well-defined operating condition.** Since all these models have tunable constants, matching data at one operating point is not very difficult. Parameters such as ambient temperature, injection pressure etc., need to be varied to characterize its influence on liquid and vapor penetration values. Such data will provide a more rigorous test-bed for different modeling approaches.

3) Future simulations from different groups need to employ same models, model constants, Schmidt number value, n.o. parcels injected, initial turbulence levels, grid size, time-step size etc.
4) Validation against combustion parameters such as lift-off length and ignition delay could not be performed in the absence of a reduced chemical kinetic mechanism. The session coordinator is collaborating with Lawrence Livermore National Laboratory and University of Connecticut to develop an appropriate reduced chemical kinetic mechanism for dodecane combustion. The aim is to develop a reduced mechanism consisting of 100 species or lesser for simulations.

References
3) http://www.sandia.gov/ecn/
4) G D’Errico, T Lucchini. Validation of spray and combustion models for diesel engines using constant-volume experiments. ILASS 2011
Spray-Combustion Modeling set-up at Argonne National Laboratory

Sibendu Som, Douglas E. Longman
Engine and Emissions Group
Argonne National Laboratory

Sponsors: U.S. Department of Energy, Office of Vehicle Technology under the management of Mr. Gurpreet Singh

Engine Combustion Network Workshop - 1
Modeling Set-up

<table>
<thead>
<tr>
<th>Modeling Tool</th>
<th>CONVERGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensionality and type of grid</td>
<td>3D, structured with Adaptive Mesh Resolution</td>
</tr>
<tr>
<td>Spatial discretization approach</td>
<td>2nd order finite volume</td>
</tr>
</tbody>
</table>
| Smallest and largest characteristic grid size(s) | Base grid size: 2mm or 4mm
Finest grid size: 0.125mm, 0.25mm, 0.5mm
Gradient based AMR on the velocity and temperature fields.
Fixed embedding in the near nozzle region to ensure the finest grid sizes |
| Total grid number | 30K-40K for 0.5mm – RANS simulations (Non-reacting)
1.3 million for 0.125mm – LES case (Reacting) @ 3 ms |
| Parallelizability | Good scalability up to 48 processors |

Turbulence and scalar transport model(s)
RNG k-ε, Standard k-ε, LES-Smagorinsky

Spray models
Breakup: KH-RT with breakup length concept
Collision model: NTC, O’Rourke
Coalescence model: Post Collision outcomes
Drag-law: Dynamic model

Time step
Variable based on spray, evaporation, combustion processes

Turbulence-chemistry interactions model
Direct Integration of detailed chemistry
well-mixed (no sub-grid model)

Time discretization scheme
PISO (Pressure Implicit with Splitting of Operators)

Chemistry acceleration
Analytical Jacobian
Adaptive Mesh Generation

Base Grid Size = 4 mm, Minimum Grid Size = 0.5 mm
LES Turbulence Model

The density weighted LES spatial filtering operation on the Navier-Stokes equation results in the filtered momentum equation:

\[
\frac{\partial \bar{\rho} \bar{u}_i}{\partial t} + \frac{\partial \bar{\rho} \bar{u}_i \bar{u}_j}{\partial x_j} = -\frac{\partial \bar{P}}{\partial x_i} - \frac{\partial \bar{\rho} T_{ij}}{\partial x_j} + \frac{\partial}{\partial x_j} \left(\mu \frac{\partial \bar{u}_i}{\partial x_j} \right) - \bar{F}_i
\]

where the LES sub-grid scale tensor: \(T_{ij} = \left(\bar{u}_i \bar{u}_j - \bar{u}_i \bar{u}_j \right) \)

is modeled using a Smagorinsky based model: \(T_{ij} = -2C_s \Delta^2 \bar{S}S_{ij} + \frac{1}{3} \delta_{ij} T_{kk} \)

where \(\bar{S} = \sqrt{2S_{ij}S_{ij}} \) \(\Delta = V_{cell}^{1/3} \) \(S_{ij} = \frac{1}{2} \left(\frac{\partial \bar{u}_i}{\partial x_j} + \frac{\partial \bar{u}_j}{\partial x_i} \right) \)

Sub-grid turbulent kinetic energy:

\[
k \cong C_{\text{les}} \frac{\Delta^2}{24} \frac{\partial \bar{u}_i}{\partial x_j} \frac{\partial \bar{u}_i}{\partial x_j}
\]

\(C_s = 0.2 \quad C_{\text{les}} = 2.0 \)
Definitions

Break-up Length

Simulations with KH-ACT model not shown!

Spray penetration @ 2 ms
Spray and Combustion Set-up

Chemical Kinetic Mechanism

1) 42 species, 283 reactions (Golovitchev et al.):

2) 68 species, 168 reactions (Lu et al.):

Lift-off length

Ignition delay: Ignition is said to occur when T ≥ 2000 K in a particular cell. Usually, coincides with appearance of OH.
Parametric Studies

- **Effect of turbulence model**
 1: RANS - Standard k-ε, RNG k-ε
 2: LES - Smagorinsky

- **Spray Structure:**
 1: Effect of grid-size: 0.5 mm, 1.0 mm, 2.0 mm
 2: Effect of time-step size

- **Effect of Oxygen Concentration:**
 1: RANS-Golovitchev et al. (LOL, ID)
 2: RANS-Lu et al. (LOL, ID)

- **Effect of Ambient temperature:**
 1: RANS-Golovitchev et al. (LOL, ID)
 2: RANS-Lu et al. (LOL, ID)
 3: LES-Golovitchev et al. (LOL similar to RANS, Only ID)

- **Effect of Ambient density:**
 1: RANS-Golovitchev et al. (LOL, ID)
 2: RANS-Lu et al. (LOL, ID)

Note: Same set of spray constants were used for all parametric studies

(1) S. Som et al., Combustion and Flame 2010
(2) S. Som, D.E. Longman & co-workers, ASME-ICE 2011
UW-ERC LES Spray Modeling

Prof. Chris Rutland
Nidheesh Bharadwaj
Noah Van Dam
Numerical setup and modeling approach

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CFD code</td>
<td>KIVA 3V Release 2 (Amsden 1993)</td>
</tr>
<tr>
<td>Spatial discretization</td>
<td>2(^{nd}) order (Amsden 1989)</td>
</tr>
<tr>
<td>Time integration</td>
<td>1(^{st}) order (Amsden 1989)</td>
</tr>
<tr>
<td>Gas phase turbulence model</td>
<td>LES (dynamic structure model)</td>
</tr>
<tr>
<td>Droplet collision</td>
<td>O’Rourke (1981)</td>
</tr>
<tr>
<td>Spray breakup</td>
<td>Kelvin-Helmoltz Rayleigh-Taylor (KH-RT)</td>
</tr>
<tr>
<td></td>
<td>model (Beale and Reitz 1999)</td>
</tr>
<tr>
<td>Turbulent dispersion</td>
<td>Gaussian (based on (k_{\text{sgs}}))</td>
</tr>
</tbody>
</table>
Turbulence modeling: LES vs RANS

Both RANS and LES:
\[
\frac{\partial \bar{\rho} \langle u_i \rangle}{\partial t} + \frac{\partial \bar{\rho} \langle u_i \rangle \langle u_j \rangle}{\partial x_j} = -\frac{\partial \bar{\rho}}{\partial x_i} + \frac{\partial \tau_{ij}^m}{\partial x_j} - \frac{\partial \langle \rho \rangle \Gamma_{ij}}{\partial x_j}
\]

Sub-grid shear stress (LES):
\[
\Gamma_{ij} = \begin{cases}
 c_s 2k & \text{LES (DSM)} \\
 \left(\frac{c_k}{\varepsilon} \right) \frac{\partial u_i}{\partial x_j} & \text{RANS (RNG)}
\end{cases}
\]

TKE (Turbulent KE):
\[
\frac{\partial (\bar{\rho} k_{sgs})}{\partial t} + \frac{\partial (\bar{\rho} \langle u_i \rangle k_{sgs})}{\partial x_j} = D - \varepsilon + P + W_s
\]

Diffusion, Dissipation, Production, Spray Source:

Focus on spray source modeling in LES context.
Spray source/sink term model

\[\dot{W}_s = -\left(u_i(\vec{x}_d, t) - \langle u_i \rangle \right) \int_{S} G(\vec{x} - \vec{\zeta}) \left\{ \sigma_y(\vec{\zeta}, t) - \bar{\sigma}_y(\vec{x}, t) \right\} dA_f = -F_i u^{sgs}_i \]

- Drag (F) based on resolved velocity field [standard KIVA model]
- Sub-grid velocity from Approximate Deconvolution Method (ADM) [Stolz & Adams 1999]

\[\dot{W}_s = -\frac{3}{8} \frac{C_d}{V_{cell}} \sum_d \left\{ \frac{m_d \bar{\rho} V_{rel}}{r_d \bar{\rho}_l} \left(\langle u_i \rangle + u'_{p,i} - u'_{d,i} \right) \left(2 \langle u_i \rangle - 3 \langle u_i \rangle + \langle u_i \rangle \right) \right\} \]

Final form
Important terms in k_{sgs} transport equation

- Production
- Dissipation
- Spray source term
- k_{sgs}: sub-grid kinetic energy
Spray A Mesh Configuration

Grid specification

<table>
<thead>
<tr>
<th>Grid</th>
<th>dx (mm)</th>
<th>dy (mm)</th>
<th>dz (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid-A</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Grid-B</td>
<td>0.5</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>Grid-C</td>
<td>0.5</td>
<td>0.5</td>
<td>0.67</td>
</tr>
<tr>
<td>Grid-D</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Comparison with recent “Spray-A” measurements at Sandia National Lab
LES Model Implementation in KIVA code

- Where u_i is the random fluctuating velocity obtained using a Gaussian PDF
Turbulence modeling: **LES vs RANS**

Both RANS and LES

\[
\frac{\partial \bar{\rho} \langle u_i \rangle}{\partial t} + \frac{\partial \bar{\rho} \langle u_i \rangle \langle u_j \rangle}{\partial x_j} = -\frac{\partial p}{\partial x_i} + \frac{\partial \tau_{ij}^{m}}{\partial x_j} - \frac{\partial \langle \rho \rangle}{\partial x_j} \Gamma_{ij}^s
\]

Sub-grid shear stress (LES)

\[
\Gamma_{ij} = \begin{cases}
 c_{ij} 2k & \text{LES (DSM)} \\
 \left(\frac{c_k}{v_T} \right)^2 \frac{k}{\epsilon} \frac{\partial u_i}{\partial x_j} & \text{RANS (RNG)}
\end{cases}
\]

Reynolds Stress (RANS)

\[
\frac{\partial \left(\bar{\rho} k_{sgs} \right)}{\partial t} + \frac{\partial \left(\bar{\rho} \langle u_j \rangle k_{sgs} \right)}{\partial x_j} = \begin{cases}
 D & \text{Diffusion} \\
 -\varepsilon & \text{Dissipation} \\
 P & \text{Production} \\
 W_s & \text{Spray Source}
\end{cases}
\]

TKE (Turbulent KE)

Focus on spray source modeling in LES context
Spray source/sink term model

\[\hat{W}_s = -\left(u_i(\bar{x}_d, t) - \langle u_i \rangle \right) \int_S G(\bar{x} - \bar{\zeta}) \left\{ \sigma_{ij}(\bar{\zeta}, t) - \bar{\sigma}_{ij}(\bar{x}, t) \right\} dA_j = -F_i \sigma_{i}^{\text{sgs}} \]

- Drag (F) based on resolved velocity field [standard KIVA model]
- Sub-grid velocity from Approximate Deconvolution Method (ADM) [Stolz & Adams 1999]

\[\hat{W}_s = -\frac{3}{8} \frac{C_d}{V_{\text{cell}}} \sum_d \left\{ \frac{m_d \bar{\rho}}{r_d \bar{\rho}_l} V_{\text{rel}} \left(\langle u_i \rangle + u'_{p,i} - u_{d,i} \right) \left(2\langle u_i \rangle - 3\langle u_i \rangle + \langle \langle u_i \rangle \rangle \right) \right\} \]

Drag from the gas to the drop

SGS gas velocity (obtained using de-convolution)
ECN spray modeling at Politecnico di Milano

G. D’Errico, T. Lucchini

Internal Combustion Engine Group
Department of Energy
Politecnico di Milano
Politecnico di Milano

The Internal Combustion Engine Group

The Academic Staff
- Giancarlo Ferrari, Full Professor
- Angelo Onorati, PhD, Full Professor
- Gianluca D’Errico, PhD, Associate Professor
- Gianluca Montenegro, PhD, Assistant Professor
- Federico Piscaglia, PhD, Assistant Professor
- Tommaso Lucchini, PhD, Assistant Professor

Temporary Researchers
- Daniele Ettorre, MSc
- Marco Fiocco, MSc

Ph.D students
- Andrea Montorfano, MSc
- Augusto Della Torre, MSc

Post-doc researchers
- Tarcisio Cerri, PhD

MSc students
- 15-20 per year
CODE
OpenFOAM® with libraries and solvers for internal combustion engine developed at Politecnico di Milano (Lib-ICE package).

OpenFOAM is a free-to-use Open Source numerical simulation software with extensive CFD and multi-physics capabilities, written in a highly efficient C++ object-oriented programming.

Impressive diffusion with 2000 downloads/week.

Very extended physical modelling capabilities

Ideal platform for research collaborations.

Physics model implementation through **equation mimicking**. Possibility of extension to non-traditional, complex or coupled physics.
The ICE group of Politecnico di Milano has contributed to develop the engine library under **OpenFOAM** technology (**Lib-ICE**):

- Moving mesh algorithms
- Spray modeling
- Combustion process modeling
- 1D-3D coupling interface
- Non-linear acoustics modeling
- DPF and SCR modeling
Spray models

Implemented capabilities:

<table>
<thead>
<tr>
<th>Injection</th>
<th>Blob, Huh, Hollow-cone, Pressure-Swirl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atomization</td>
<td>Huh-Gosman, Bianchi, WAVE, LISA</td>
</tr>
<tr>
<td>Breakup</td>
<td>TAB, ETAB, KH-RT, Reitz-Diwakar</td>
</tr>
<tr>
<td>Evaporation</td>
<td>Frossling</td>
</tr>
<tr>
<td>Heat-transfer</td>
<td>Ranz-Marschall</td>
</tr>
<tr>
<td>Wall impingement</td>
<td>Stanton, Naber-Reitz, Bai-Gosman</td>
</tr>
<tr>
<td>Collision</td>
<td>Nordin, O’Rourke</td>
</tr>
</tbody>
</table>

- Development of new **atomization** models (Huh-Gosman and Bianchi) to describe liquid-jet atomization of high pressure liquid jets. Model tuning constants derived from multi-phase LES simulations of liquid jet breakup.
- Development of **droplet-wall interaction** and **liquid film** models to correctly account for the influence of wall impingement on combustion and fuel-air mixing processes.
ECN contribution
Simulation of Baseline and SprayA test cases

SPRAY MODEL CHOICE
Discrete Droplet Model (DDM)
Bianchi model for injection and atomization. It is a modified version of the Huh-Gosman model where multiphase LES calculations were used to tune the main model coefficients ($C_1,..,C_5, C_w$) and to compute secondary droplet diameter.
Turbulent quantities (L_t, t_t) initialized for each parcel according to the nozzle flow conditions.

Wave model (based on Kelvin-Helmholtz theory) for secondary breakup

Other models: Frossling for evaporation, Ranz-Marschall for heat-transfer, turbulent dispersion (stochastic). Collision was not taken into account.
Modified Huh-Gosman model

• Diameter reduction of the injected parcels:

\[
\frac{dD}{dt} = -C_5 \frac{L_a}{\tau_a}
\]

\[
\begin{cases}
L_a = C_2 \cdot L_t \\
\tau_a = C_1 \cdot \tau_t + C_4 \cdot \tau_w
\end{cases}
\]

• \(L_t\): turbulent length-scale, supposed to be constant.
• \(t_t\): turbulent time-scale \((t_t = t_{t0} + 0.1 \cdot t)\).
• \(t_w\): wave-growth time-scale (Kelvin-Helmholtz).

<table>
<thead>
<tr>
<th>(C_1)</th>
<th>(C_2)</th>
<th>(C_4)</th>
<th>(C_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>0.5</td>
<td>0.3</td>
<td>0.7</td>
</tr>
</tbody>
</table>

No tuning or parameterization was performed:
same constants for Baseline nheptane and SprayA case.
NUMERICAL TECHNIQUES

Adaptive Local Mesh Refinement (ALMR)

Total fuel mass in one cell is the error estimator: Y_{l+g}
Grid refined when: $Y_{\text{min}} \leq Y_{l+g} \leq Y_{\text{max}}$
Arbitrary level of refinements allowed.
Works with hexahedral topology and moving meshes.

Direct integration of detailed chemistry (DICC)
Each cell is considered to be perfectly mixed
No turbulence-chemistry interaction
ODE stiff solver (semi-implicit Burlish-Stoer, SIBS)

TDAC algorithm
Tabulation of Dynamic Adaptive Chemistry
It combines ISAT (in-situ adaptive tabulation) and DAC (dynamic adaptive chemistry).
CPU speed up factors from 50-500.
PoliMI Best configuration set-up and legend for the parameter studies

<table>
<thead>
<tr>
<th>PoliMI best set-up</th>
<th>Legend for the parameter studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>atomization: Bianchi (modified Huh-Gosman)</td>
<td>1 Best</td>
</tr>
<tr>
<td>breakup: Kelvin-Helmholtz</td>
<td>2 ALMR: min Mesh 0.5 mm</td>
</tr>
<tr>
<td>turbulence: Realizable k-epsilon</td>
<td>3 ALMR: min Mesh 1.0 mm</td>
</tr>
<tr>
<td>time step: 5.00E-07</td>
<td>4 ALMR: min Mesh 2.0 mm best</td>
</tr>
<tr>
<td>mesh size: ALMR with minimum mesh size equal to 1 mm</td>
<td>5 ALMR: min Mesh 4.0 mm</td>
</tr>
<tr>
<td>chemistry: TDAC with scheme from Lu</td>
<td>6 time step: 5.e-6</td>
</tr>
<tr>
<td></td>
<td>7 time step: 1.e-6</td>
</tr>
<tr>
<td></td>
<td>8 time step: 5.e-7 best</td>
</tr>
<tr>
<td></td>
<td>9 time step: 1.e-7</td>
</tr>
<tr>
<td></td>
<td>10 turbulence model: standard k-epsilon</td>
</tr>
<tr>
<td></td>
<td>11 turbulence model: realizable k-epsilon best</td>
</tr>
<tr>
<td></td>
<td>12 turbulence model: RNG k-epsilon</td>
</tr>
<tr>
<td></td>
<td>13 DI of complex chemistry: scheme from Lu (56s) best</td>
</tr>
<tr>
<td></td>
<td>14 DI of complex chemistry: scheme from Curran (159s)</td>
</tr>
<tr>
<td></td>
<td>15 DI of complex chemistry: scheme from Patel (32s)</td>
</tr>
</tbody>
</table>
The Diesel spray modelling activity at PoliMI is currently funded by:

[Company Logos]
Evolution of analytical models to describe penetration and fuel-ambient mixing.

- Used to estimate ambient entrainment, momentum transfer, penetration.
- Mixing estimate also used for vaporization and combustion analysis:
 - Liquid length (Siebers, 1999)
 - Lift-off length (Siebers and Higgins, 2001)

\[
\frac{F}{A} = \frac{2}{\sqrt{1+16 \cdot \tilde{x}^2} - 1}
\]

\[
\tilde{x} = \frac{x'}{x^+} \quad \tilde{\rho} = \frac{\rho_f}{\rho_a}
\]

\[
x^+ = \tilde{\rho}^{1/2} \left(\frac{\tilde{\rho} - m}{\tilde{\rho}} \right) \sqrt{C_a \cdot d_0} \cdot a \cdot \tan(\theta/2)
\]

\[
\text{Penetration}
\]

\[
\tilde{S} = \tilde{x} = \frac{x'}{x^+}
\]

\[
\tilde{t} = \frac{\tilde{S}}{2} + \frac{\tilde{S}}{4} \cdot \sqrt{1 + 16 \cdot \tilde{S}^2} + \frac{1}{16} \cdot \ln \left(4 \cdot \tilde{S} + \sqrt{1 + 16 \cdot \tilde{S}^2} \right)
\]
Evolution of analytical models to describe penetration and fuel-ambient mixing.

(2) Variable Profile

Musculus and Kattke, 2009

Spreading angle still required as input to the model.

Z = 0 (for FWHM, s.a. is ≈ 45% of this angle).

Polynomial profile (used for fuel mass and velocity) resembles a Gaussian radial distribution.

- Variable-profile model also based on momentum and mass transfer.
- Analytical solution for mixing and penetration exists if steady injection rate.
 - For variable rate of injection, or after the end of injection, Musculus and Kattke use multiple, discrete control volumes.
Spray and Combustion Setup

<table>
<thead>
<tr>
<th></th>
<th>n-heptane</th>
<th>Spray A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Fluent 13.0</td>
<td></td>
</tr>
<tr>
<td>Turbulence model</td>
<td>Realizable k-ε</td>
<td></td>
</tr>
<tr>
<td>Spray model</td>
<td>Discrete Phase Model with “Blob” method, Stochastic DRW, Ranz-Marshall, Sherwood number correlation</td>
<td></td>
</tr>
<tr>
<td>Drag law</td>
<td>Stokes-Cunningham /High-Mach-Number drag</td>
<td>Stokes-Cunningham drag</td>
</tr>
<tr>
<td>Second breakup model</td>
<td>“Wave” breakup , $B_1=14.5$</td>
<td>“Wave” breakup , $B_1=22$</td>
</tr>
<tr>
<td>Collision model</td>
<td>O'Rourke method</td>
<td></td>
</tr>
<tr>
<td>Grid</td>
<td>Structured 2D axisymmetric</td>
<td></td>
</tr>
<tr>
<td>Grid size</td>
<td>0.125mm to 0.5mm 100800 cells 0.25mm to 1mm 25200 cells 0.5mm to 2mm 6300 cells</td>
<td>0.25mm to 1mm 25200 cells</td>
</tr>
<tr>
<td>Spatial discretization</td>
<td>Second order upwind</td>
<td></td>
</tr>
<tr>
<td>Turbulence-chemistry interactions</td>
<td>well-mixed</td>
<td></td>
</tr>
<tr>
<td>Chemistry mechanism</td>
<td>Baseline ERC mech. SAE Paper 2004-01-0558</td>
<td>N/A</td>
</tr>
<tr>
<td>Chemistry acceleration</td>
<td>ISAT</td>
<td>N/A</td>
</tr>
<tr>
<td>Time discretization</td>
<td>PISO (Pressure-Implicit with Splitting of Operators)</td>
<td></td>
</tr>
<tr>
<td>Time step size</td>
<td>$1e-07s$</td>
<td></td>
</tr>
</tbody>
</table>
Definitions and parameter studies

- **Non-reacting case**
 - *Spray structure*
 - Mesh resolution
 - Time step size
 - Drag law

- **Reacting case**
 - *Lift-off length and ignition delay*
 - Ambient O2 %
 - Initial ambient temperature
 - Ambient density

<table>
<thead>
<tr>
<th>Parameter studied</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid length</td>
<td>The axial position of leading particle</td>
</tr>
<tr>
<td>Vapor penetration length</td>
<td>The distance from the injector to 0.5% fuel vapor mass fraction layer</td>
</tr>
<tr>
<td>Lift-off length</td>
<td>The length from the injector to the closest layer where OH mass fraction reaches 0.02%</td>
</tr>
<tr>
<td>Ignition delay</td>
<td>The time from start of injection to the time where the maximum temperature of the domain is 400K above the initial ambient temperature</td>
</tr>
</tbody>
</table>
Temporal evolution of fuel mass fraction

OH temporal evolution

21% O₂ 14.8kg/m³, 6.8ms

Temporal evolution of fuel mass fraction

CFD: 14.8kg/m³ at 3ms

CFD: 30kg/m³ at 3ms
Compilation of Spray A Modeling Efforts

May 13th 2011

Sibendu Som
Argonne National Laboratory

Engine Combustion Network (ECN) Workshop 2011
Participants

1) Sibendu Som, Douglas E. Longman (ANL)
 Argonne National Laboratory, Chicago, IL, USA
 ssom@anl.gov; dlongman@anl.gov

2) Nidheesh Bharadwaj, Noah Van Dam, Chris Rutland (ERC)
 University of Wisconsin, Madison, WI, USA
 nvandam@wisc.edu; rutland@engr.wisc.edu

3) Gianluca D’Errico, Tommaso Lucchini, Daniele Ettore (ICE-Polimi)
 Politecnico di Milano, Milan, Italy
 gianluca.derrico@polimi.it; tommaso.lucchini@polimi.it

4) Lyle Pickett* (Sandia)
 Sandia National Laboratory, CA, USA
 lmpicke@sandia.gov

5) Yuanjiang Pei, Evatt Hawkes, Shawn Kook (UNSW)
 University of New South Wales, NSW, AU
 yuanjiang.pei@student.unsw.edu.au; evatt.hawkes@unsw.edu.au
Outline

- Baseline Spray A: non-reacting conditions
 - Spray penetration vs. time
 - Effect of grid size
 - Effect of time-step size
 - Effect of turbulence model
 - Vapor penetration vs. time
 - Effect of grid size
 - Effect of time step size
 - Effect of turbulence model
 - Mixture fraction at different radial positions
 - Two axial positions were chosen for comparison
 - Comparison of vapor boundary location
 - Comparison of liquid boundary location
 - 2 optional test cases investigated
 - Similar grid sizes, models, model constants identified
 - No comparison against experimental data
 - Discussion & Future work!
Baseline Spray A: non-reacting conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel</td>
<td>N-dodecane (n-C12H26)</td>
</tr>
<tr>
<td>Nozzle outlet diameter</td>
<td>90 µm</td>
</tr>
<tr>
<td>Nozzle K-factor</td>
<td>1.5</td>
</tr>
<tr>
<td>Nozzle shaping</td>
<td>Hydro-eroded</td>
</tr>
<tr>
<td>Discharge coefficient</td>
<td>0.86</td>
</tr>
<tr>
<td>Fuel injection pressure</td>
<td>150 MPa</td>
</tr>
<tr>
<td>Fuel injection temperature</td>
<td>363 K</td>
</tr>
<tr>
<td>Injection duration</td>
<td>1.5 ms</td>
</tr>
<tr>
<td>Injected fuel mass</td>
<td>3.5 mg</td>
</tr>
<tr>
<td>Injection rate shape</td>
<td>Square</td>
</tr>
<tr>
<td>Ambient gas temperature</td>
<td>900 K</td>
</tr>
<tr>
<td>Ambient gas pressure</td>
<td>6.0 MPa (approx.)</td>
</tr>
<tr>
<td>Ambient gas density</td>
<td>22.8 Kg/m³</td>
</tr>
<tr>
<td>Ambient Oxygen Concentration</td>
<td>0 %</td>
</tr>
</tbody>
</table>
Quick Recap

<table>
<thead>
<tr>
<th></th>
<th>ANL</th>
<th>ERC</th>
<th>ICE-Polimi</th>
<th>UNSW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code/Software</td>
<td>CONVERGE</td>
<td>KIVA-ERC</td>
<td>OpenFOAM</td>
<td>FLUENT</td>
</tr>
<tr>
<td>Turbulence models</td>
<td>Standard k-ε, RNG k-ε, LES- Smagorinsky</td>
<td>Dynamic structure LES</td>
<td>Standard k-ε, RNG k-ε, Realizable k-ε</td>
<td>Realizable k-ε</td>
</tr>
<tr>
<td>Spray models:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Injection</td>
<td>Blob</td>
<td>Blob</td>
<td>Huh-Gosman</td>
<td>Blob</td>
</tr>
<tr>
<td>Atomization & Breakup</td>
<td>KH-RT</td>
<td>KH-RT</td>
<td>Bianchi, Wave</td>
<td>Wave</td>
</tr>
<tr>
<td>Collision</td>
<td>NTC</td>
<td>O’Rourke</td>
<td>No</td>
<td>O’Rourke</td>
</tr>
<tr>
<td>Drag</td>
<td>Dynamic</td>
<td>Aerodynamic</td>
<td>Dynamic</td>
<td>Stokes-Cunningham</td>
</tr>
<tr>
<td>Evaporation</td>
<td>Frossling</td>
<td>Frossling</td>
<td>Frossling</td>
<td>Frossling</td>
</tr>
<tr>
<td>Grid:</td>
<td>Structured with AMR</td>
<td>Structured Cartesian</td>
<td>Structured with ALMR</td>
<td>Structured</td>
</tr>
<tr>
<td>Type</td>
<td>Full-3D domain</td>
<td>3D-Axisymmetric</td>
<td>Quarter-3D domain</td>
<td>2D-Axisymmetric</td>
</tr>
<tr>
<td>Dimensionality</td>
<td>0.125 mm - LES, 0.5 mm - RANS</td>
<td>0.5 mm - LES</td>
<td>0.5 mm</td>
<td>0.25 mm</td>
</tr>
<tr>
<td>Smallest grid size</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time discretization</td>
<td>PISO</td>
<td>KIVA-SIMPLE</td>
<td>PISO, SIMPLE</td>
<td>PISO</td>
</tr>
<tr>
<td>Preferred time-step</td>
<td>Variable</td>
<td>Variable</td>
<td>5.0E-7</td>
<td>1.0E-7</td>
</tr>
<tr>
<td>size (ms)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Spray Penetration vs. Time

Quasi-steady liquid length predicted within ±3-4% accuracy by all models

Liquid length fluctuations can be reduced by injecting higher number of computational parcels
Initial transience not well predicted by any model. Possible causes:
- Accurate representation of ROI?
- Need to account for nozzle geometry and needle-lift effects?
Liquid Spray Structure

Sandia Data

ANL

ICE-Polimi

Liquid Length = 10.6 mm

Liquid Length = 10.9 mm

Liquid length = 10.4 mm
In general, the CFD models are unable to match the slopes.
Vapor Boundary Comparison

After 1.0 ms it is clear that the simulations are under-predicting vapor penetration.

Hence, it is not surprising that both the CFD models are over-predicting the vapor dispersion, especially at 1.5 ms.

Probably a LES model can better predict the instantaneous structure of the spray.
Radial Mixture fraction Distribution

- Simulations plots at 1.5 ms
- In general, Gaussian mixture fraction profiles are well-predicted by all models at both axial locations
- Mixture fraction distribution along the center line need to be compared

$X = 25 \text{ mm}$

$X = 45 \text{ mm}$
Effect of “Grid” Size
Spray Penetration

Clearly, results are not grid-independent with the RANS models:

- Resolving a flow with characteristic length scale of about 90 µm with 500 µm grid sizes
- Refining the grid size below 125 µm may violate fundamental Eulerian-Lagrangian assumptions
- Stability issues arise due to further refining of the grid
Results are **not grid-independent** with the RANS models:

- Vapor penetration increases with decrease in grid size
- Difference in prediction between 0.5mm and 1mm grid sizes is smaller than between 1mm and 2mm
- With adaptive mesh resolution, was the grid sufficiently resolved downstream?
Effect of “time-step” Size
ANL results seem to be fairly independent of time-step size.
ICE-Polimi simulations predict accurate liquid penetration values for $dt = 5\times10^{-7}$.

Spray Penetration

- ANL results seem to be fairly independent of time-step size.
- ICE-Polimi simulations predict accurate liquid penetration values for $dt = 5\times10^{-7}$.
Vapor Penetration results seem fairly independent of time-step size!
Effect of “Turbulence” Models
Spray Penetration: Different RANS models

Effect of RANS turbulence models on spray penetration is not pronounced!
Spray Penetration: Different LES models

Grid independence on spray penetration observed with ERC-LES model

ANL model:
- Spray penetration increases with decrease in grid-size
- dx=0.25mm does the best job in predicting spray penetration
Effect of RANS turbulence models on vapor penetration is much more pronounced.

Realizable k-ε model does the best job for ICE-Polimi.
RNG k-ε model does the best job for ANL.

ANL vs. ICE-Polimi:
- Standard k-ε model predicts similar vapor penetration.
- Significant difference in predictions of RNG k-ε turbulence models.
Results are not grid-independent with the LES models also:

- Vapor penetration decreases with decrease in grid size. This trend is opposite to that observed for RANS simulations.
- LES models need to be improved to better predict vapor penetration.
Smaller grid sizes results in earlier initiation of instabilities at the vapor-air interphase which results in faster breakup and reduction in vapor penetration!
Further Comparison of Computational Approaches
Test Condition Set-up

<table>
<thead>
<tr>
<th></th>
<th>Case 1</th>
<th>Case 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient gas pressure</td>
<td>4.0 MPa</td>
<td>8.0 MPa</td>
</tr>
<tr>
<td>Ambient gas density</td>
<td>14.8 Kg/m³ (approx.)</td>
<td>30.0 Kg/m³ (approx.)</td>
</tr>
</tbody>
</table>

- Standard k-ε model
- Blob injection model
- No collision model
- Standard drag model
- PISO time discretization
- Frossling evaporation model
- No break-up length concept
- No turbulent dispersion
- Minimum grid size = 0.5 mm
- Fixed time-step size = 5E-7
- Wave secondary breakup model
 - $B_1 = 15, 60$ (KH model time-constant)

<table>
<thead>
<tr>
<th></th>
<th>ANL</th>
<th>ICE-Polimi</th>
<th>UNSW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parcels injected</td>
<td>75,000</td>
<td>10,000</td>
<td>100,000</td>
</tr>
<tr>
<td>Initial TKE, TDR</td>
<td>5, 5000</td>
<td>0.735, 5.67</td>
<td>1, 1.3</td>
</tr>
<tr>
<td>Schmidt number</td>
<td>0.9</td>
<td>0.7</td>
<td>0.9</td>
</tr>
<tr>
<td>N.O cells at 1.5ms</td>
<td>35,000</td>
<td>18,350</td>
<td>6,300</td>
</tr>
<tr>
<td>Run time till 1.5ms</td>
<td>18 minutes on 8 processors</td>
<td>2.65 minutes on 6 processors</td>
<td>85 minutes on 2 processors</td>
</tr>
</tbody>
</table>
Spray Penetration

$P_{amb} = 4.0$ MPa

$P_{amb} = 8.0$ MPa

- B_1 is perhaps the most influential spray model constant
- Differences in simulation results are very apparent
 - Initial transience is markedly different
 - Different steady state liquid lengths predicted
 - Differences are more pronounced at lower ambient pressure values
Differences in simulation results for vapor penetration are less pronounced. In fact, ANL and ICE-Polimi results are very close to each other which is very surprising, given the differences in liquid penetration.
Discussions

Decide on future cases to run for “apples-to-apples” comparison and validation:
1) Grid size
2) Breakup model
3) Turbulence model (RANS vs. LES)
4) Chemical-kinetic mechanism

Experimental data of interest:
1) Rate of injection measured with different techniques such as x-ray radiography, Bosch rate-meter, momentum flux methods.
 Ramirez et al., “Quantitative X-ray measurements of high-pressure fuel sprays from a production heavy duty diesel injector” Experiments in Fluids (47) 119-134, 2009