

Spray A experimental efforts

Coordinator: Gilles Bruneaux IFPEN

Spray A session

- Context
 - ECN/Spray A
- Objectives
- Organization
- Topics of interest / Contributing institutions

Use a series of well-defined, canonical flames to promote model development applicable to turbulent combustion.

- This type of dataset and focused modeling effort does not exist for engine conditions!
- We need to (and can) delve deeper to understand the workings of engine sprays.

ECN goals

- Establish an international experimental database for model validation in realistic engine conditions
- Provide a framework for collaborative comparisons of measured and modeled results
- Identify priorities for further experimental and computational research

Spray A database

Definition of "Spray A" conditions

- Spray A:
 - A common condition for all the institutions contributing to the database
 - common???

Ambient gas temperature	900 K
Ambient gas pressure	6 MPa
Ambient gas density	22.8 kg/m ³
Ambient gas composition	15% O ₂ , 0% O ₂
Common rail fuel injector	Bosch solenoid-activated, generation 2.4
Fuel injector nozzle outlet diameter	0.090 mm
Nozzle K factor	1.5 { K = $(d_{inlet} - d_{outlet})/10$ [use μ m] }
Nozzle hydro-erosion	Discharge coefficient = 0.86 with 100 bar ΔP .
Spray full included angle	0° (1 axial hole)
Fuel injection pressure	150 MPa
Fuel	n-dodecane
Fuel temperature at nozzle	$363 \text{ K} (90^{\circ} \text{ C})$
Common rail volume/length	22 cm ³ / 28 cm (Use GM rail model 97303659)
Distance, injector inlet to common rail	24 cm
Fuel pressure measurement	7 cm from injector inlet / 24 cm from nozzle
Injection duration	1.5 ms
Approximate injector driver current	18 A for 0.45 ms ramp, 12 A for 0.345 ms hold

Spray A challenges

- Provide a standard case <u>common</u> to all the participating institutes
 - Difficulties related to boundary conditions control
 - ambient conditions
 - injection conditions...
 - Difficulties related to the verification of the main characteristics
 - optical diagnostics set up configurations
 - data processing methods...

Spray A standard diagnostics

- Set up specifications
 - Injection system geometry (rail, tube length, pressure acquisition..)
 - Nozzle tip temperature
- Ambient temperature distribution (thermocouple)
- Spray characterization
 - Liquid penetration (fast Mie scattering)
 - Vapor penetration (fast Schlieren)
- Combustion characterization
 - Ignition (fast direct visualization/fast Schlieren)
 - Lift off length (filtered direct visualization)
 - Soot luminosity (fast direct visualization)
 - pressure rise (precombustion vessels)

Spray A session objectives

- Communicate on Spray A conditions
- Compare results between contributing institutions
 - Serve as discussion platform to propose guidelines for the institutions that are willing to perform spray A conditions experiments and modeling
- Present the past and future experiments of each contributing institution

Spray A session organization

- Topics of interest
 - Vessel temperature
 - Ambient composition
 - Nozzle and injector temperature
 - Nozzle geometry
 - Hydraulic characterization
 - Liquid length
 - Vapor penetration (non reacting/reacting)
 - Combustion (Lift off length/soot luminosity/pressure rise)
- Working groups lead by the contributing institutions
 - Presentation of the synthesis of data comparison (15min)
 - Open discussion during the session (10min)
 - Recommendation for the "best" experimental and post-processing methods

Vessel Temperature **Technical University Eindhoven - Precombustion vessel**

Team

- M. Meijer, R.J. Christians, L.M.T. Somers
- Characteristics of apparatus
 - Precombustion vessel: C_2H_2 , N_2 , 0_2 , Ar \longrightarrow H_2O , CO_2 , N_2 , 0_2 , Ar
 - up to 300bar, 2200K, 60kg/m³
 - 3 optical access: 5*10cm sapphire windows
 - Injection system: hydro-pneumatic pump, 4000bar max

Diagnostics/Schedule

- Past, Mie Scattering, Schlieren, LOSA
- 2011, Toluene PLIF, TLIF, phospor seeding
- 2012, Formulation of a diesel surrogate fuel, Soot diagnostics for PCCI combustion

ECN workshop may 13-14 2011, Ventura – Spray A Session – Gilles Bruneaux

Ambient composition Michigan Technological University – Precombustion Vessel

Team

 Jeffrey Naber, Seong-Young Lee, Jaclyn Nesbitt, Seung Hyun Yoon, Anqi Zhang, Khanh Cung

Characteristics of apparatus

- Precombustion vessel: H₂, CH₄, C₂H₂, N₂, O₂, CO₂ \rightarrow H₂O, CO₂, N₂, O₂
- Up to 350bar, 1800K+, 60kg/m³
- Optical access: up to 5 sapphire windows (4" diameter, 1.875" thickness)
- Fuel Injection systems: Piezo & Solenoid, Air-driven liquid pump, 4140 bar max

Diagnostics/Schedule

- Back Mie Scattering, Laser Scattering, Schlieren, CH*, PIV – Done 2009 / 2010
 - LDV/PDPA, LII 2011

Nozzle and injector temperature IFPEN – Precombustion vessel

Team

- L.M. Malbec, L. Hermant, G. Bruneaux
- Characteristics of apparatus
 - Precombustion vessel: H_2 , N_2 , C_2H_6 , $0_2 \rightarrow H_2O$, CO_2 , N_2 , 0_2
 - up to 150bar, 1500K, 30kg/m³
 - 5 optical access: 2*8cm sapphire windows
 - Injection system: hydro-pneumatic pump, 2750bar max

Diagnostics/Schedule

- Spray A standard Done in 2010
- PIV in reacting conditions 2011
- Formaldehyde and OH LIF 2012

Nozzle geometry Argonne – Cold-Flow X-Ray Measurements

Team

- CF Powell, A Kastengren, J Wang
- Characteristics of apparatus
 - Cold-flow vessel with heated injector holder
 - N_2 up to 30 bar \rightarrow 35 kg/m³
 - Two custom polymer windows: x-ray transparent
 - Injection system: mechanical pump, 1600 bar max

Diagnostics/Schedule

- Injector geometry and needle motion Done in March 2011
- X-ray radiography of spray ongoing

© 2011 - IFP Energies nouvelles, Rueil-Malmaison, France

Hydraulic characterization CMT / UPV – Continuous flow vessel

- Team leaded by R. Payri
 - J.M. Garcia, J. Gimeno, J.J. Lopez
 - J. Manin, J.G. Nerva, M. Bardi
- Characteristics of apparatus
 - Continuous flow (either air, nitrogen or synthetic EGR)
 - From 10 to 150bar, From 300 to 1000K
 - 3 optical access with diameter 128 mm
 - High pressure CR Fuel Injection system
- **Diagnostics/Schedule**
 - Hydraulic characterization
 - Spray penetration in reacting and non reacting conditions (LL, LOL)
 - Vapor penetration
 - CH, OH chemiluminscence

ECN workshop may 13-14 2011, Ventura –Spray A Session – Gilles Bruneaux

Liquid length Georgia Tech – Continuous Flow Vessel

- Team
 - Caroline Genzale
 - Arriving in the Fall: Ben Knox, Mike Tree, Gina Magnotti
- Characteristics of apparatus
 - Lab build underway
 - Vessel design conditions: 150 bar, 1000 K
 - Injection system: air-driven pump, 4100 bar max
 - **Diagnostics/Schedule**
 - Rate of momentum Summer 2011
 - Spray A liquid and lift-off 2012
 - Droplet sizing (non-vaporizing) 2012
 - Droplet sizing and LVF (vaporizing) 2013/14
 - Soot/LII 2013/14

ECN workshop may 13-14 2011, Ventura - Spray A Session - Gilles Bruneaux

Vapor penetration (non reacting/reacting) Caterpillar - Continuous Flow Vessel

Team

- Tim Bazyn, Glen Martin
- Characteristics of apparatus
 - Continuous flow vessel: 0-21% O₂ in N₂
 - up to 150bar, up to 1000K, up to 50+kg/m³
 - 3 optical access: 125 mm FS windows
 - Injection systems:
 - Hydro-pneumatic pump 3000bar max
 - Common rail pump
 - Mechanical electronic injector
 - Hydraulic electronic injector
- Diagnostics/Schedule
 - Spray A standard + T and P sensitivity– Done in 2010

Combustion Sandia– Precombustion vessel

Team

- J. Manin, P. Lillo, L.M. Pickett,
- C. Genzale (now at GaTech)

Characteristics of apparatus

- Precombustion vessel: H_2 , N_2 , C_2H_2 , $O_2 \rightarrow H_2O$, CO_2 , N_2 , O_2
- up to 350bar, 1500K, 60kg/m³
- 100 mm sapphire windows
- Diagnostics/Schedule
 - Spray A standard Done in 2010
 - Rayleigh scattering- 2010
 - Liquid length quantification- 2011
- ECN workshop may 13-14 2011, Ventura Spray A Session Gilles Bruneaux

Institution SNU – Precombustion vessel

Team

- Junyong Lee, Namho Kim, Seunghyun Lee, Kyoungdoug Min
- Characteristics of apparatus
 - Dual-purpose : single-hole, multi-hole nozzle
 - Up to 150bar, 1500K
 - 4 optical access: 2 penetrating windows,
 - 1 circular window, 1 laser window
 - Injection system: CR solenoid, Piezo
 - Mixing fan
- Diagnostics/Schedule
 - Automatic control system (ongoing)
 - Temperature distribution (2011)
 - Liquid and vapor penetration (2011)

ECN workshop may 13-14 2011, Ventura – Spray A Session – Gilles Bruneaux

Chalmers University & CORIA collaborating on diagnostics for dense sprays

Team

- M. Linne & M. Rahm: Chalmers
- J-B Blaisot, C. Rozé, S. Idlahcen & D. Sedarsky: CORIA

Characteristics of apparatus

- Two-pulse ballistic imaging for the liquid core and velocities
- Structured laser induced planar imaging (SLIPI) for Mie and PLIF
- Steady flow vessel (Chalmers):
 - up to 100bar, 900K
 - optical access