Deadline for contributions

- 1 August 2012 (modelling)
- 1 July 2012 (experimental)

Coordination

 Michele Bardi, Christian Angelberger, Evatt Hawkes will organise the data collection with assistance from Yuanjiang Pei and will do the tasks of synthesis, interpretation, and presentation of results.

Objectives

- Characterization of lift-off length, ignition delay, and other available measures relating to gas-phase chemical reactions.
- To check reproducibility between experimental facilities.
- To compare and contrast experimental measurements of the lift-off length, ignition delay, ignition location, and any other reacting scalar measurements that may be available.
- Compare different models against experiment for the purposes of validation and identification of what works and what needs improvement.
- Clarify issues of chemistry and turbulence-chemistry interactions in models.

Data needed from modellers

Definitions

- Ignition: Please submit both definitions.
 - 1. First time at which Favre-average OH mass fraction reaches 2% of the maximum in the domain after a stable flame is established.
 - 2. Time of maximum rate of rise of maximum temperature.
- Lift-off: First axial location of Favre-average OH mass fraction reaching of 2% its maximum in the domain.

Useful parameter studies to do

- Fix the turbulence-chemistry interaction model and study chemistry models. Most people should be able to do a well-mixed model so that is a good target.
- Fix the chemistry model and study turbulence-chemistry interaction model. See below for recommended chemistry models to chose.

Spray A

- Baseline condition: 15% O2, 900K, 22.8 kg/m³, 1500 bar injection pressure, 4ms
 - (See ECN website for listing of full baseline conditions.)
- Suggested chemistry: contact Sibendu Som <ssom@anl.gov> and Tianfeng Lu, or make your suggestion to the group.

Results as T_a varied:

- **750K**, **800K**, 850K, **900K**, 1000K, **1100K**, 1200K
 - Other conditions all as baseline.
 - o If you cannot do all, preference to the ones in bold.
- Will request:
 - Ignition delay versus T_a
 - Simple three column text file T (K), Ignition delay (μs) definition 1., Ignition delay (μs) definition 2..
 - o Lift-off length versus T_a
 - Simple two column text file T (K), LOL (mm).
 - o Ignition location versus Ta
 - Simple two column text file T (K), Ignition location (mm).

Drill down just for $T_a = 800K$ and $T_a = 1100K$

- Lift-off versus time
 - o Simple two column text file time (ms), LOL (mm).
- OH mass fraction field at 0.5ms and 1.5ms ASI
 - Ideally, as a raw binary image file with only the image data, similar to the Rayleigh images that are on the ECN website. We will need to load and convert into a common format.
 - Otherwise, actual data interpolated to a structured grid.

Other parameter studies to do:

- Please make temperature the first priority, but for those who want to do more.
- Oxygen concentration: 15 21 13 %
- Injection pressure: 50 100 150 MPa
- Ambient density: 22.8 15.2 7.6 kg/m³
- Will request ignition delay and lift-off length as functions of the above parameters.

Spray H

- Lift-off length (mm) and ignition delay (ms)
 - o for $\rho_a=14.8 \text{ kg/m}^3$
 - at 21% O₂, versus T₂: 750K 1300K
 - at T_a =1000K versus % O₂: 8 21
 - o for ρ_a = 30 kg/m³
 - versus % O2 : 8 15
 - Simple two-column text files.
 - o See ECN website for listing of full conditions.

- OH mass-fraction fields
 - o For 21% O2, T_a =1000K, ρ_a = 14.8 kg/m³ at 0.6 ms and 1.5 ms
 - o For 10% O2, T_a =900K, ρ_a = 14.8 kg/m³ at 1.8 ms and 3.0 ms
 - See instructions for Spray A.
- Chemistry models that more than one group are using:
 - o Lu et al. 53 species: http://www.engr.uconn.edu/~tlu/mechs/mechs.htm
 - o Seiser et al. https://www-pls.llnl.gov/?url=science and technology-chemistry-combustion-nc7h16_reduced_mechanism

Data needed from experimentalists

Spray A

Techniques

- Ignition delay
 - o Broadband chemiluminescence (<600 nm + regular lens)
 - o Pressure rise
 - Schlieren method
- Lift-off length
 - OH* chemiluminescence: modellers needs time resolved LOL (still images or fast acquisition)
 - o OH PLIF?

Test conditions:

- Spray A (reference condition)
- Parametric variations (numbers indicate the priority):
 - 1. Ambient Temperature: 750 (800) 900 (1000) 1200 K
 - 2. Injection pressure: 50 100 150 Mpa
 - 3. Ambient density: 22.8 15.2 7.6 kg/m3
 - 4. Oxygen concentration: 15 21 13 %
 - 5. Fuel: n dodecane n heptane (for n-heptane, diaphragm fuel pump is strongly suggested)

In order to extend the comparison to a larger number of test conditions we propose to perform tests with long injections (injection time: 4000 µs)

Data submission:

- Raw Images with spatial coordinates will be the best way to compare tests from different facilities
- The experimental diagnostic and processing methods are described in the ECN webpage (http://www.sandia.gov/ecn/cvdata/expDiag.php). For more details please contact Michele Bardi (mbardi@mot.upv.es).