

Topic 1: Internal Flow, Near-Nozzle Break-up, Mixing, and Evaporation

Guidance on Experiments and Simulations to be Performed

Sibendu Som: Argonne National Laboratory

January 24th 2014

- **Topic 1.1: In-nozzle experiments and simulations**
- Topic 1.2: Near field spray development and coupled nozzle flow and spray simulations
- **Topic 1.3: Evaporation and Parametric Variations**
- Bridging the gap: How spray details (Topic 1) affect Combustion (Topic 2)

Topic 1.1: In-nozzle Experiments and Simulations

David Schmidt: University of Massachusetts **Chris Powell*:** Argonne National Laboratory

ECN Experimental Objectives

- Provide boundary conditions for simulations of internal flow
 - Nozzle geometry
 - Rate of injection
 - Needle lift & off-axis motion
- Provide data for validation
 - Radiography at nozzle exit
 - Nozzle flow coefficients
- Assess the uncertainties for all of these parameters

ECN Modeling Objectives

- Define level of confidence of internal flow simulations by validating, where possible, with experimental data
- Quantify internal flow dynamics that are likely to affect spray characteristics of primary atomization
- Assess which physical phenomena are important for including in models
 - Turbulence
 - Compressibility
 - Equilibrium vs. non-equilibrium phase change
 - Dissolved or non-condensable gasses
- Quantities to be compared for validation:
 - Cd, Cv, Ca (for each hole, in the case of spray-B).

- Spray A
 - Diesel nozzle, single hole, n-dodecane, non-cavitating
 - High resolution (1 mm) X-ray tomography of Nozzle 675
 - Ultra High resolution (0.6 mm) tomography for 678, & 679
 - Lift and wobble measured for all nozzles
 - The target injector will be 675

http://www.sandia.gov/ecn/cvdata/targetCondition/injectorNozGeom.php

- Spray B
 - Diesel nozzle, 3-hole, n-dodecane, non-cavitating
 - Ultra High resolution (0.6 μm) tomography partially completed
 - Lift and wobble measured for 199, 200 but not yet 201 (use 199 lift and wobble profile for simulations)
 - The target injector will be 201

http://www.sandia.gov/ecn/cvdata/targetCondition/SpBNozGeo.php

Priority List: Simulations

- Spray A conditions:
 - Injector 675

ECIN

- 150 MPa injection pressure vs. time (BoundaryCondition&Data.zip)
- 100 MPa injection pressure vs. time (BoundaryCondition&Data.zip)
- Fuel temperature 343 K
- Spray B conditions:
 - Injector 201
 - 150 MPa injection pressure (injection pressure vs. time: Use same as Spray A)
 - 100 MPa (second priority: Use same as Spray A)
 - Fuel temperature 338 K

ECN Data Needed from Experiments

- Dissolved gas content (assume the equilibrium value of 1.28E-3 mole fraction)
- Mass flow rate at the nozzle exit*
 - Spray A target injector
 - Long tube method for ROI
 - Momentum measurements
 - Virtual Injection Rate Generator: <u>http://www.cmt.upv.es/ECN03.aspx</u>
 - Preferred for simulations, data already available
 - Spray B target injector
 - ROI for each hole, individually
 - Virtual Injection Rate Generator: <u>http://www.cmt.upv.es/ECN03.aspx</u>
 - Preferred for simulations, data available end of January
- Needle motion and wobble*
 - Spray A (BoundaryCondition&Data.zip)
 - Spray B (BoundaryCondition&Data.zip)

* These data are provided prior to the simulations being run

ECN Data Needed from Simulations

- Spray A target injector
 - Mass and momentum flow rate and fluctuation distribution at the nozzle exit vs. time
 - Axial slices showing transverse variation of mass flow and momentum at exit for $\theta = 0^{\circ}$. Radial distribution of mass flow and momentum along this axial slice
 - Cd, Cv, Ca
- Spray B target injector
 - Mass and momentum flow rate and fluctuation distribution at the nozzle exit vs. time
 - Axial slices showing transverse variation of mass flow and momentum at exit for $\theta = 0^{\circ}$. Radial distribution of mass flow and momentum along this axial slice
 - Cd, Cv, Ca for each hole
 - Flow split between holes vs. time
 - Vapor fraction at the exit plane as a function of time
 - Iso-surface of 50% vapor by volume

• Experimental data

- Need ROI (slide 8), geometry (slide 6), and needle motion (slide 8) by January 25
- Data for validation by March 1
- Guidelines on how to submit results will be provided shortly
- Data should be submitted to Chris Powell (<u>cpowell@anl.gov</u>) and cc to Sibendu Som (<u>ssom@anl.gov</u>)
- Computational results:
 - All results must be provided by March 1
 - Guidelines on how to submit results will be provided shortly
 - Data should be submitted to David P. Schmidt
 (<u>schmidt@ecs.umass.edu</u>) and cc to Sibendu Som (<u>ssom@anl.gov</u>)

<u>Topic 1.2:</u> Near field spray development and coupled nozzle flow and spray simulations

Alan Kastengren^{*}: Argonne National Laboratory Qingluan Xue: Argonne National Laboratory Julien Manin: Sandia National Laboratory Chawki Habchi: IFPEN

Objectives

ECN

- Focus on the near nozzle region within first 10 mm
- Obtain quantitative (fuel concentration, droplet size, etc.) and qualitative (macroscopic parameters, optical/x-ray relationship, etc.) information about the breakup process of sprays
- Provide high-fidelity measurements of liquid penetration, liquid mass distribution, and droplet size in the nozzle near field
- Facilitate dynamic coupling of in-nozzle flow and external spray approaches
- Compare the different coupling approaches of in-nozzle flow and external spray
- Encourage high-fidelity simulations near nozzle sprays and liquid jet atomization
- Study the capability of the different modeling approaches (Lagrangian-Eulerian, Eulerian-Eulerian) and CFD frameworks (RANS, LES, DNS) for the simulation of the primary atomization and the cavitation

ECN Anticipated Experimental Results

- Imaging of internal nozzle gas flow and near-nozzle dribble with x-ray phase-contrast imaging
- Microscopic measurements of the initial penetration and spreading angle
- Break up and mixing of the sprays at the end of injection at the microscopic level
- USAXS droplet sizing and perhaps optically measured droplet size as well
- X-ray radiography of Spray B: nozzles 199 and 201
- Ballistic imaging of near-nozzle region

ECN Priority List – Spray A Simulations

- Spray of interest: injector 675
- Condition # 1: Non-evaporating conditions from x-ray radiography at Argonne
 - Ambient pressure: 2 MPa; Ambient temperature with pure N₂: 303 K
 - Injection pressure: 150 MPa; Fuel injection tip temperature: 343 K
- Condition # 2: Parametric variation on Condition #1
 - Ambient pressure: 2 MPa; Ambient temperature with pure N₂: 303 K
 - Injection pressure: 100 MPa; Fuel injection tip temperature: 343 K

ECN Priority List – Spray B Simulations

- Spray of interest: Injector 201, plume #3
- Condition # 1, non-evaporating conditions from x-ray measurement at ANL
 - Ambient pressure: 2.01 MPa; Ambient temperature with pure N2: 306 K
 - Injection pressure: 155 MPa; Fuel injection tip temperature: 338 K
- Condition # 2, non-evaporating conditions from x-ray measurement at ANL
 - Ambient pressure: 2 MPa; Ambient temperature with N2: 306 K
 - Injection pressure: 100 MPa; Fuel injection temperature: 338 K

ECN Data Needed from Experiments

- Data needed for initializing Spray A and Spray B simulations are already highlighted in Topic 1.1
- For both injectors: (Data available: BoundaryCondition&Data.zip)
 - Mass flow rate at the nozzle exit from virtual ROI tool from CMT and measured nozzle coefficients
 - Fuel spray penetration vs. time from long-distance microscopy and diffused backillumination
 - Contour plots of projected liquid density at 0.1 ms and 0.5 ms from Argonne
 - Transverse mass distribution (projected density across the spray) profiles averaged between 0.5 – 1.0 ms:
 - x = 0.1, 0.6, 2, 6, and 10 mm downstream to nozzle exit
 - Projection plane is 0° plane (i.e., plane containing fuel inlet, or projection along the z-axis with the injector in the theta = 0 position)
 - Transverse integrated mass (TIM) vs. axial distance in the near nozzle region @ 0.5 ms
- For Spray A:
 - Liquid volume fraction across cross-section at x = 0.1, 0.6, 2, 6, 10 mm
 - the y-axis cut plane (check slide 17)

Much different results if comparing mixture fraction or liquid volume fraction.

Near-nozzle comparisons

ECN

• LVF or mixture fraction data derived from x-ray measurements (see SAE 2014-01-1412) compared to a model:

model LVF (same modeling results) experimental vertical LVF profile

ECN Data Needed from Spray A Simulations

- Mass flow rate at the nozzle exit
- Fuel spray penetration vs. time (0.1% liquid mass fraction)
- Contour plots of projected density in the 0° plane at 0.1 and 0.5 ms after actual SOI
- Projected fuel mass/density (ug/mm²) profiles across nozzle axis at 0.5 ms after SOI
 - x = 0.1, 0.6, 2, 6, and 10 mm downstream to nozzle exit
 - @ x= 0.6 and 6 mm, @ 0.75 ms and 1 ms after SOI
- 2D contours of liquid volume fraction at x = 0.1, 0.6, 2, 6, 10 mm
- Transverse integrated mass profiles at 0.5 ms after SOI:
 - x = 0.1 mm, 0.6 mm, 2 mm, 6 mm, and 10 mm
- Mean droplet size (SMD) at x = 1, 4, 8 mm at 0.5 ms after SOI
 - Mean SMD at the above axial positions vs. axial position
 - Distributions of SMD vs. radial position at the above axial positions
- Dynamics: peak projected density and Full Width Half Maximum (FWHM) of distribution at x = 0.1, 2, 6 mm from nozzle for entire duration of the injection event (in intervals of 20 μ s)

Data Needed from Spray B Simulations

- Spray B target injector (201):
 - Compare results between different plumes for condition # 1
 - Penetration vs. time
 - Transverse mass distribution at 0.1 mm, 2 mm, and 6 mm
 - Mean SMD at 1, 4 mm at 0.5 ms after SOI vs. axial position
- For plume # 3 which is measured at Argonne
 - Contour plots of projected density in the 0° plane at 0.1 and 0.5 ms after actual SOI
 - Projected fuel mass/density (ug/mm²) profiles across nozzle axis at 0.5 ms after SOI
 - x = 0.1, 0.6, 2, 6, and 10 mm downstream to nozzle exit
 - @ x= 0.6 and 6 mm, @ 0.75 ms and 1 ms after SOI
- 2D contours of liquid volume fraction at x = 0.1, 0.6, 2, 6, 10 mm
- Transverse integrated mass profiles at 0.5 ms after SOI:
 - x = 0.1 mm, 0.6 mm, 2 mm, 6 mm, and 10 mm
- Mean droplet size (SMD) at x = 1, 4, 8 mm at 0.5 ms after SOI
 - Mean SMD at the above axial positions vs. axial position
 - Distributions of SMD vs. radial position at the above axial positions

- Computational results:
 - January 25, 2014: model input data provided
 - February 15, 2014: contact organizers to arrange data format for submission
 - March 1, 2014: all results must be submitted
 - Results should be submitted to:
 - Alan Kastengren (<u>akastengren@anl.gov</u>)
 - Julien Manin (jmanin@sandia.gov)
 - Qingluan Xue (<u>qxue@anl.gov</u>)
 - Chawki Habchi (chawki.habchi@ifpen.fr)
 - Sibendu Som (<u>ssom@anl.gov</u>)

Topic 1.3: Evaporation and Parametric Variations

Alessandro Montanaro: – CNR Instituto Motori Tommaso Lucchini*: – Politecnico di Milano

- Focus on non-combusting conditions
- Understanding how the spray development in the far field is influenced by variation of operating conditions :
 - Injection pressure
 - Ambient density
 - Ambient temperature
 - Nozzle geometry
- How different experimental techniques affect measurements?
- Are multi-dimensional models capable to reproduce experimental trends?

Experimental:

- Define a set of operating conditions to build a database of experiments for Spray-B configuration.
- Understanding how results are repeatable in different institutions (Spray A and Spray B).
- Understanding influence of different nozzle serial numbers on spray evolution (Spray A and Spray B).

Simulation:

- How different models reproduce the effects of different operating conditions on spray evolution?
- To compare different approaches (Eulerian-Lagrangian, Eulerian-Eulerian, ...) and, within the same approach, different sub-models.
- Understanding how spray evolution from multi-hole nozzle is affected by mesh structure.

ECN Required Experimental data for Spray-A

Priority list : experimental conditions to be tested

Priority level	T [K]	density [kg/m³]	Pressure [MPa]	Fuel	T fuel [K]	Injection duration [ms]
1	900	22.8	150	n-dodecane	363	≥1.5
2	900	22.8	100	n-dodecane	363	≥1.5
3	900	22.8	50	n-dodecane	363	≥1.5
4	900	7.6	150	n-dodecane	363	≥1.5
5	900	15.2	150	n-dodecane	363	≥1.5
6	700	22.8	150	n-dodecane	363	≥1.5
7	1000	22.8	150	n-dodecane	363	≥1.5
8	1100	22.8	150	n-dodecane	363	≥1.5
9	700	22.8	50	n-dodecane	363	≥1.5
10	440	22.8	150	n-dodecane	363	≥1.5
11	303	22.8	150	n-dodecane	363	≥1.5

ECN Required Experimental data for Spray-A

Experimental data to be provided

- Injected fuel mass flow rate
- Liquid spray penetration versus time
- Liquid spray penetration (steady)
- Vapor penetration versus time
- Radial distribution of mixture fraction and variance at 25 and 45 mm from injector at 1.5 ms after SOI.
- Axial distribution of mixture fraction and variance at 1.5 ms after SOI.
- Radial distribution of axial and radial velocity components at 25 and 45 mm from injector at 1.5 ms after SOI
- Axial velocity distribution at 1.5 ms after SOI.

Additional information (only if it is different from Spray A)

- Details about the used test-rig.
- Details about vessel temperature distribution at start of injection.
- Details about techniques used for experiments.

- Ambient conditions: use SANDIA ECN experimental data search utility.
- Injected mass flow rate profile: use CMT mass flow rate generator.
- Nozzle geometry: use 675 dimensions
- Tune the model on baseline Spray A condition (priority 1) with 1.5 ms injection duration.

ECN Required Data from Spray A simulations

Simulated operating points: same of experiments Simulated data to be provided

- Liquid spray penetration versus time
- Liquid spray penetration (steady)
- Vapor penetration versus time
- Radial distribution of mixture fraction and variance at 0.1, 0.6, 2, 5, 6, 10, 25, and 45 mm from injector at 1.5 ms after SOI
 - Vapor-phase and total (liquid and vapor) mixture fraction.
 - For only priority 1, 6, 10 (in slide 24)
- Axial distribution of mixture fraction and variance along the centerline at 1.5 ms after SOI.
- Radial distribution of axial and radial velocity components at 0.6,
 5, 10, 25 and 45 mm from injector at 1.5 ms after SOI
 - For only priority 1, 6, 10 (in slide 24)
- Axial velocity distribution at 1.5 ms after SOI.

ECN Experimental Data Requested for Spray-B*

Priority level	T [K]	density [kg/m³]	Pressure [MPa]	Fuel	T fuel [K]	Injection duration [ms]
1	900	22.8	150	n-dodecane	363	1.5
2	440	22.8	150	n-dodecane	363	1.5
3	303	22.8	150	n-dodecane	363	1.5
4	1100	22.8	150	n-dodecane	363	1.5

* It is understood that all the above Spray B data may not be available by March 1st, hence please plan your experiments as per the noted priority

Experimental data to be provided

- Injected fuel mass flow rate: available from the virtual rate generator at CMT
- Liquid spray penetration versus time
- Liquid spray penetration (steady)
- Vapor penetration versus time

Additional information

- Details about the used test-rig
- Details about vessel temperature distribution at start of injection
- Details about techniques used for experiments

ECN Information for Setting-up Spray B simulations

- Ambient conditions: use SANDIA ECN experimental data search utility.
- Injected mass flow rate profile: use CMT rate of injection generator
- Nozzle geometry specifications for 201
- Use the same set of model constant that were obtained for Spray A baseline condition

Objective: understanding how mesh structure affects spray evolution.

- All three holes must be included in simulations
- Use same spray parameters from spray A model tuning

Simulated operating points

Priority level	T [K]	density [kg/m³]	Pressure [MPa]	Fuel	T fuel [K]	Injection duration [ms]	
1	900	22.8	150	n-dodecane	363	1.5	
2	440	22.8	150	n-dodecane	363	1.5	

ECN Required Data from Spray B simulations

- Liquid spray penetration versus time for each plume
- Liquid spray penetration (steady) for each plume
- Vapor penetration for each plume
- Projected gas velocity along the axis of each plume
- Radial velocity distribution for each plume at 2, 10, and 20 mm axial distance from nozzle
- Radial mixture fraction distribution for each plume at 2, 10, and 20 mm axial distance from nozzle.
- Radial mixture fraction variance distribution for each plume at 2, 10, and 20 mm axial distance from nozzle.

- Computational and experimental results:
 - Contact organizers by February 15th for data submission format
 - All results must be provided by March 1st
 - Experimental results to be sent to Alessandro Montanaro (<u>alemon@im.cnr.it</u>) and cc to Sibendu Som (<u>ssom@anl.gov</u>)
 - Simulation results should be sent to Tommaso Lucchini and Roberto Torelli (<u>tommaso.lucchini@polimi.it</u>, <u>roberto.torelli@polimi.it</u>) and and cc to Sibendu Som (<u>ssom@anl.gov</u>)

Bridging the gap: How Spray details (Topic 1) affect Combustion (Topic 2)

Yuanjiang Pei, Sibendu Som: Argonne National Laboratory Jose Garcia: CMT-Motores Termicos

Designed to bridge-the-gap between spray (Topic 1) and combustion (Topic 2) for Spray A

 How do the differences in boundary conditions and spray characteristics influence combustion characteristics?

Objectives

ECN.

- Can simulations using the best boundary conditions available, capture these trends?
- Why differences in spray characteristics do not seem to influence the combustion behavior?
- What are the most sensitive variables for different targets of spray and combustion characteristics? (Global Sensitivity Analysis)

Boundary Conditions

Facility	Nominal				SNL				СМТ			
Combustion vessel					constant-volume preburn			constant-pressure flow				
Fuel						n-dodecane						
Injector Number #					210677				210675			
Injector diameter [mm]	0.090				0.0837				0.0894			
Discharge coefficient	0.86				0.89				0.9			
ROI	ECN2 recommended			SNL ROI SNI txt								
Reacting	No		Yes		No		Yes		No		Yes	
Ambient temperature [K]	900	800	900	1100	891.9	800.8	902	1112.3	896	810.8	899.9	1100
Injection pressure [MPa]	150	150	150	150	152.7	154.8	152.8	152.6	150	150	150	150
Injection duration [ms]	1.54	6.1	6.1	6.1	1.54	6.1	6.1	6.1	1.54	6.1	6.1	6.1
Mass injected [mg]	3.46	14	14	14	3.46	14	14	14	3.46	14	14	14
Ambient density [Kg/m ³]	22.8	22.8	22.8	22.8	23.01	22.76	22.81	22.7	22.8	22.5	22.8	22.8
Initial mole composition [%]	$O_2 = 0;$ $O_2 = 15; N_2 = 75.15; CO_2 = 6.22;$ $N_2 = 89.71;$ $H_2 O = 3.62$ $CO_2 = 6.52;$		O ₂ =0; N ₂ =89.71;	O ₂ =15; N ₂ =75.15; CO ₂ =6.22; H ₂ O=3.62			$O_2 = 0;$ $O_2 = 15.01$ $N_2 = 100$; $N_2 = 85$	O ₂ =15.1, O ₂ =15. N ₂ =84.9 N ₂ =84	O ₂ =15.1, N ₂ =84.9			
	H ₂ O=3.77			H ₂ O=3.77	OH [ppb]							
					4	7.8	168					
Fuel temperature [K]	363	363	363	363	373	373	373	373	386	384	386	386
Ambient pressure (MPa)	6.05	5.25	5.94	7.3	6.05	5.25	5.94	7.3	6	5.4	6.09	7.3

• For injection parameters, one can choose injection pressure or mass injected and injection duration, you may choose the one that suits your need.

• OH mole fraction is obtained from *Nesbitt et al. 2011*, approximations are made.

- Run 3 simulations with nominal, SNL and CMT on each conditions listed below, and use the available boundary conditions (cf. Slide 3) to capture the variation of the experiments.
 - One non-reacting case at 900 K
 - Three ambient T conditions for reacting cases, 800 K, 900 K and 1100 K.
- Submit the following results using recommended definitions by each topic organizer:
 - Global Sauter mean diameter vs. time
 - Liquid length vs. time
 - Vapor penetration length vs. time
 - Lift-off length vs. time
 - Ignition delay
 - Modeling and numerical details provided to each topic organizer i.e., Sibendu Som and Jose Garcia
 - Please report the boundary conditions you used that are different than the ones listed in the table of last slide in any case.
- Additional data may be requested based on analysis to gain further insight

- Submission deadline: March 1st 2014
- Please send the data to Yuanjiang Pei (<u>ypei@anl.gov</u>)
- Format for the data submission (both line and contour plots) will be made available soon