

Engine Combustion Network

ECN 4 Spray G mixing experiments and modeling

Presenters:

Lama Itani IFPEN

Lyle M. Pickett
Sandia National Laboratories

Topic oranizer:
Daniel Vaquerizo Sánchez
CMT – Motores Térmicos

Contributors

Experiment

- Argonne National Laboratory
 - Radiography/tomography
 measurements: Daniel Duke, Chris
 Powell, Alan Kastengren, Andrew
 Swantek, Nick Sovis
- General Motors R&D
 - Droplet velocity/sizing: Scott Parrish
- IFPEN
 - LIF mixing: Lama Itani, Gilles Bruneaux,
 Laurent Hermant
- Sandia National Laboratories
 - High-speed planar imaging: Scott
 Skeen, Julien Manin, Lyle Pickett,
 Jonathan Frank, Panos Sphicas

Modeling

- Argonne National Laboratory
 - Modeling: Sibendu Som, Kaushik Saha, Z.
 Weng, Y. Pei, Chao Xu, (UConn student)
- Politecnico di Milano
 - Tommaso Lucchini, Tarcisio Cerri
- General Motors R&D
 - Ron Grover

Spray G experiments and modeling have progressed...we can now ask more detailed questions about gasoline DI modeling

Laser-induced fluorescence for planar mixing measurements

- Use fuel blend: iso-octane (purity grade = 99.8%) + 0.03% vol. p-DFB
- 1) two-color LIF collection, measure temperature and fuel concentration
- 2) single-color LIF collection with calibration by total injected fuel
- see SAE 2015-01-1902

Tag	Label
0	Fourth harmonic of a Nd:YAG laser (266 nm)
0	25 mm mirrors at 266 nm
€	Attenuator
4	Beam sampler
6	Laser energy sensor
0	Cylindrical lens ($f = -76.2 \text{ mm}$, 60 mm × 27 mm)
Ø	Spherical lens (f = 500 mm, φ= 100 mm)
8	Beam dump

IFPEN

LIF

Background: evolution of mixing at different ambient densities

Spray G

ambient density

Results: Jet Evolution

- Four stages in the spray development were defined (0.1, 0.5, 0.7 and 2.7 ms aSOI).
- Red contours derived from instantaneous Miescattering images.
- Until 0.7 ms: Jet momentum is mainly driving the mixing process.
- For timings >> 0.7 ms: Jet concentrated on the injector axis where mixing is driven by aerodynamic motion created by air entrainment

Sept 2015 5/35

Fuel concentration with p-DFB LIF imaging

Planar measurements self consistent with line-ofsight schlieren imaging

- pLIF images lie within schlieren contour
- reveal the extent of mixing at the center of the spray

Modeling contributions from ECN3

0.9 ms ASOI

Experiment

ANL

PoliMi

UW

ECN3 RANS Modeling Approaches

	ANL	Polimi	UW	
CFD Code	Converge 2.1.0	OpenFOAM + Lib-ICE	KIVA3V-r2-ERC	
Turbulence Model	Standard k-ε	Standard k-ε	RNG k-ε	
Injection Model	Lagrangian/Blob	Lagrangian/Huh	Lagrangian/Blob	
Primary Break-up Model	KH-RT (B1 7; RT Length 0.0)	Huh-Gosman	KH-RT (B1 40; RT Length 1.0)	
Secondary Break-up		Wave		
Vaporization	Frössling	Spalding Number- based (mass-based)	Frössling	
Heat Transfer	O'Rourke	Ranz-Marshall	Ranz-Marshall	
Collision	NTC	None		
Turbulent Dispersion	O'Rourke	None	Gaussian Distribution	
Droplet Drag	Dynamic	Dynamic w/ non- spherical correction	Dynamic w/ non- spherical correction	

ECN3 RANS models: Mesh Details

	ANL	Polimi	UW
Domain Dimensions	108 Ø x 108 mm	169 x 248 mm	100 x 100 x 60 mm
Base Cell Size	2 mm	4 mm	1 mm
Min Cell Size	0.25 mm	1 mm	-
Adaptive or Static Refinement	Both	Adaptive	Uniform
Cell Type	Cartesian	Cartesian	Cartesian Hexahedron
Total/Maximum Cell Count	1.53 Million	115,000	600,000

LES and RANS simulations offered at ECN4

Poli. Milano RANS, ECN3

Fuel mixture fraction on Y-Z plane

Poli. Milano RANS, ECN4

0.5 ms

1.0 ms

Vapor fuel mixture fraction on X-Y plane, Z = 15 mm

Simulation Set-up at ANL

Modeling tool	CONVERGE
Dimensionality and type of grid	3D, Cartesian
Grid embedding management	Base mesh size fixed to 1 mm, 0.125 mm min. cell size
	(a) Fixed embedding near injectors and boundaries
	(b) Gradient based AMR on the velocity and temp. fields
Number of processors used	Most simulations on 64 processors
Turbulence model	LES: Dynamic Structure*
Spray models	Injection: Blob injection model
	Breakup: KH-RT without breakup length concept
	Collision model: NTC (No Time Counter)
	Coalescence model: Post Collision outcomes
	Drag-law: Dynamic model
Time step	Variable based on spray, evaporation processes
	Sub grid stross tonsor

Momentum Equation

$$\frac{\partial \bar{\rho} \tilde{u}_i}{\partial t} + \frac{\partial \bar{\rho} \tilde{u}_i \tilde{u}_j}{\partial x_j} = -\frac{\partial \overline{P}}{\partial x_i} + \frac{\partial \overline{\sigma}_{ij}}{\partial x_j} - \frac{\partial \overline{\tau}_{ij}}{\partial x_j}$$
Sub-grid stress tensor τ_{ij} needs to be modeled

Dynamic Structure Model

$$\tau_{ij} = 2k\bar{\rho} \frac{L_{ij}}{L_{kk}}$$

$$L_{ij} = \widehat{u}_i \widehat{u}_j - \widehat{u}_i \widehat{u}_j \qquad k = \frac{1}{2} (\widehat{u}_i u_j - \widehat{u}_i \widehat{u}_j)$$

^{*} Dynamic structure model was chosen since it provided best predictions against diesel spray experimental data compared to the other SGS models by our team (Xue & Som et al., AAS paper, 2013)

Model Settings for LES simulation

Constant	Brief Description	Value
B_0	B ₀ KH model droplet size constant	
B ₁	KH model breakup time constant	
C ₁	KH model droplet normal velocity	0.188
C _t	RT model breakup time constant	1.0
C _{RT}	RT model droplet size constant	0.6
Shed factor	Percentage of mass given to child droplets by parent droplet	0.25
Pr _{sgs}	k-equation constant	1.39
$C_{oldsymbol{arepsilon}}$	LES dissipation rate model constant	1.0
C _{ps}	Drop turbulent dispersion constant	0.01

Expense of Argonne LES simulations

Base cell size (mm)	AMR & Embed scale	Minimum cell size (mm)	Number of injected parcels	Peak cell count at 1 ms (millions)	Wall clock time (hours) till 1 ms on 64 CPUs
1	3	0.125	50,000	~ 13.3	7.2

- 20 realizations with random number seeding (injections) performed (720 CPU hrs per injection)
 - 14,400 total CPU hrs

RANS setup at Poli. Milano

CFD Code details			
	OpenFOAM + LibICE libraries by Politecnico di Milano (spray, combustion, mesh		
Software	management,)		
Solver	RANS, unsteady, compressible solver. Spray modeled with lagrangian approach		
Turbulence model	Standard k-epsilon with modified C1 (1.5 instead of 1.44)		
Fuel type	Iso-octane		
Liquid properties	Iso-octane NIST data		
Gas properties	Iso-octane and N2 Janaf coefficient		
Temporal Discretizazion			
scheme	Euler Implicit		
Convection discretization			
scheme	Limited (TVD), second-order		
Diffusion discretization	Including the non-orthogonal component of the gradient		
	Lagrangian spray model details		
Atomization Model	Huh-Gosman, tuned following LES Data presented in SAE Paper 2014-01-0149		
Injection Model	Huh		
Secondary Breakup model	Pilch-Erdman		
Collision model	off		
Evaporation model	Based on Spalding mass number		
Heat transfer model	Ranz-Marshall		
Turbulent dispersion model	Stochastic		
Mesh details			
Cell size	Ranging from 1 to 4 mm using Adaptive Local Mesh refinement		

Plume vector and spreading angle considerations

- Plume vector, or inclination angle, set at specified 37 degrees (rel. to injector), for both Argonne LES & RANS and PoliMi RANS simulations
- Plume origin at designed radius
- Plume "spreading angle" allowed to change with time based upon nozzle velocity, turbulence, etc
- Plume vector / inclination angle does not change with time

PoliMi plume angle during injection

ECN Spray G – Velocity and drop size observations

for injector #16, plume #1: Substantial dataset with ~ 10,000 injections

Plume center moves towards injector axis with time ASI

Plume inclination angle decreases with time

ECN Other planar visualization shows plume redirect

Line of sight
Diffused back illumination
contrast set to I/I0 = 0.9 to 1.0

100 kHz Planar Rayleigh imaging attempt at Sandia Standard Spray G conditions 3.5 kg/m³, 573 K

lower laser energy

30°

2015 ECN4

Plume pointing vector derived from radiography at different axial positions

- Gradual shift of plume direction to injector axis while moving downstream
- Marked transient period at higher angle

Plumes completely merge during injection at high T, high ρ

Plume-plume interaction questions

- Is the plume vector redirection caused by internal flow or downstream fluid mechanics?
- If imposing a constant plume vector (and plume spreading angle), will Lagrangiandroplet RANS and LES simulations predict plume interaction and merge?
- Lacking detailed spray measurements, how does the Lagrangian-droplet modeler predict plume vector (as a function of time)?

Delphi patternation at 1 atm: z = 50 mm, $R_{plume} = 33.2 \text{ mm}$ plume vector angle = 33°

Argonne LES simulations

Argonne LES simulations

Radial position y [mm]

Argonne RANS vs LES simulations

PoliMi RANS simulations

Sept 2015 ECN 4

PoliMi RANS simulations

- Plume movement to injector axis does not happen in either Argonne or PoliMi RANS simulations
 - Different than experiment or LES simulations

Z = 10 mm0.25 ms Z = 15 mm0.50 ms 0.50 ms 0.75 ms 0.75 mg 1.00 ms 1.00 m 1.25 ms 1.25 ms

Sept 2015 ECN 4

Plume center movement with time ASI

experimental GM

Velocity magnitude axial

RANS model PoliMi

Z = 15 mm

PoliMi RANS vs IFPEN mixing

- Spray penetration RANS < LIF measurements
- Spray width/length RANS < LIF measurements

Is vaporization rate a factor for plume shift?

Substantially more vaporization in the LES simulation

Z = 10 mm, 0.5 ms ASI

Is vaporization rate a factor for plume shift? Argonne

radiography
0.5 ms ASI

- Non-vaporizing radiography experiments show less plume dispersion
- Shift of plume center to injector axis more pronounced for LES simulation

Questions for discussion

- Plume center moves toward injector axis during and after injection. What is the cause?
 - Experimental evidence is convincing
 - PDI velocity measurements at z = 15 mm indicate plume vector (or inclination angle) is < 31°
 - Delphi patternation data show plume vector angle = 33°
 - Argonne radiography shows plume vector angle from 34° to 32° by z = 10 mm
 - Always less than drill angle (37°)
 - Quantitative data describing the velocity between plumes, time resolved during injection, would be useful.
 - Measurements showing the plume direction right at the exit of the nozzle are needed.
 - Closest radiography at z = 2 mm
 - Help from internal flow modeling is needed

Questions for discussion

- We need recommended practices for "affordable" CFD simulations
 - Lagrangian spray modeler with somewhat coarse mesh
 - What is best practice for specifying plume vector as a function of time?
 - For only "steady" period of injection: Drill angle is too large,
 downstream measurements too small (plume interaction driven)
 - What grid size is simply too coarse to pick up plume interaction?
 - Method for treating counterbore and tip geometry protrusion?

Argonne radiography kg fuel / m³

Current weaknesses

Experiments

- Have not provided quantitative vapor/liquid in "mixed" regions
- Radiography limited to non-vaporizing conditions
- Droplet velocity measurements made, but gas/doplet velocity over larger ROI is needed

CFD (Lagrangian)

- Generally, RANS simulations too coarse to resolve inter-plume fluid mechanics
- Do not consider that plume direction (moving out of the nozzle) changes with time
 - consider that small- and multi-injection cycles are common
- Appear to have widely varying vaporization predictions