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ECN1:  Detection of liquid boundary 
near the LL is sensitive to optical 
method and setup 
 

Extinction offers referenced intensity 
measurement. 
 

Some history: We’ve made several attempts to standardize 
liquid length measurements within the ECN. 

Side-illumination, high-res., f/4 

Side-illumination, fast, f/4 
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• “Extinction profiles measured on 
the centerline are somewhat 
different between institutions.” 

• “The variations observed are 
believed to come from differences 
in optical arrangement (mainly 
illumination and collection angles).” 

• “A methodology must be setup to 
consistently measure liquid length 
from extinction without the 
influence of beam steering.” 

Some history: We’ve made several attempts to standardize 
liquid length measurements within the ECN. 

ECN2:  Adoption of DBI imaging to measure I/Io  

Beam steering 

ECN4: Fredrick Westlye will provide us an update on this topic next!  
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More history: We’ve seen consistent predictions of liquid/vapor 
penetration between CFD codes, but not in the details of the spray. 

ECN2: Significant differences between CFD codes in the  
predicted spray structure. 
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More history: We’ve seen consistent predictions of liquid/vapor 
penetration between CFD codes, but not in the details of the spray. 

ECN3: Even when downstream profiles are consistent, upstream spray 
structure can vary greatly. These regions can be coincident with LOL region. 
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Following up on prior themes: 
•Further assess institutional variations in DBI measurements and 
develop a standardized (and consistent) measurement approach for 
liquid penetration. 
•Pursue further insight into phase transition behavior at Spray A 
conditions. 
Vaporization data at new target conditions:  
•Spray A multiple injection conditions 
•Spray B 
•Spray C and D injectors 
 

Experimental Objectives for Vaporizing Diesel Sprays 
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Following up on prior themes: 
• Deep dive into near-nozzle spray structure variations between 

codes and sensitivities to ambient conditions. 
• Understand impact of these differences on combustion 

predictions. 
Simulations at new target conditions:  
• Spray A multiple injection conditions. 

Modeling Objectives for Vaporizing Diesel Sprays 



Spray A Parametric Modeling Study 

CMT 
Adrian Blanco, Raul Payri 

 

PoliMi 
Tommaso Lucchini, Gianluca D’Errico 

 

GA Tech 
Gina Magnotti, Caroline Genzale 

 

Bosch 
Edward Knudsen 

 

Sandia 
Guilhem Lacaze, Joe Oefelein 
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• Injector 675 

• 89.4 µm, Ca = 0.98, Aeff = 6.15x10-

9 m2, ρliq = 713 kg/m3 

• Standard injection rate profile 
provided to all institutions 

Target conditions for Spray A parametric modeling study 

Parametric Variable O2 [%] Tamb [K] ρamb [kg/m3] Pinj [bar] 

Standard Spray A  0 900 22.8 1500 

Temperature 
0 700 22.8 1500 

0 1200 22.8 1500 

Density 
0 900 7.6 1500 

0 900 15.2 1500 

Injection Pressure 
0 900 22.8 500 

0 900 22.8 1000 
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Comparison of spray and CFD models 

PoliMi GA-Tech CMT Bosch Sandia 

Code OpenFOAM CONVERGE OpenFOAM Cascade 
Technologies Raptor 

Spray model Blob, KH-RT Blob, KH-RT Eulerian Σ-Y model Eulerian 
 dense fluid 

Eulerian 
dense fluid 

Evaporation 
model 

Frossling drop 
evaporation 

Frossling drop 
evaporation 

State relationships 
from locally 

homogeneous flow 
assumption 

Peng-Robinson 
EOS 

Real fluid 
model 

Turbulence 
model RANS, k-ε RANS, k-ε  RANS, k-ε  LES LES Dynamic 

Model 
Mesh 

Dimensionality 
Grid size 

2D  
0.5 mm 

3D 
0.0625 –  

2 mm 

2D 
0.009 mm – 

 0.7 mm 

3D w/ internal 
nozzle 

3.2M cells 

3D 
0.002 mm – 

0.1 mm 



Standard Spray A Condition 
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Time ASI [ms]
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Simulations of quasi-steady liquid penetration cluster around 
the experimental data, similar to previous workshops.  

Liquid boundary definition: 
 
Axial position where path-
averaged liquid volume 
fraction is 0.15% 
 

0.5 mm x 0.5 mm LVF 
computation grid 

Spray A 
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Differences in fuel vapor fraction upstream arise from 
combined effects of spray model and momentum coupling. 

Spray A 
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Predicted spray structures vary significantly between 
institutions as we approach the LL. 

Spray A 
time averaged 
spray structure 

1 - 3 ms 
 

9.0 mm 
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SMD profiles can take on different distribution behaviors as 
breakup and evaporation proceed. 

Spray A 
time averaged 
spray structure 

 1 - 3 ms 

Which solution is the “accurate” one? 

3 mm 

7.5 mm 

9 mm 



Spray A Parametric Study: 
Exploration on what information we’d really like to have 

to validate evaporating sprays 
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Revisit of global model response to parametric variations in 
ambient and operating conditions. 
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How do the spray and evaporation models respond to changes 
in ambient and operating conditions? 

CMT 

PoliMi 
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-1 -0.5 0 0.5 1

Comparison of LVF behavior and accumulated mass… they 
both show *some* sensitivity to ambient conditions. 

PoliMi 
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Is there a potential pathway forward to validated modeling of 
the local liquid structure and evaporation process? 

Magnotti & Genzale, Atomization and Sprays, 2015. 
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Rayleigh
α d 6

Mie α d 2

Theoretical dependence of light-scattering 
cross-section on drop size 

Modeling of light extinction 
measurements could provide some 
validation at vaporizing conditions. 
 

Quality extinction measurements 
needed (next talk).  
 

Validation of near-spherical droplets in 
these regions (previous talk). 
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• Old news revisited: Validation of evaporating sprays solely against 
liquid and vapor penetration measurements does not adequately 
validate the evaporation process. 

• Somewhat old news revisited: It is difficult to isolate effects of spray 
model choices on near-nozzle mixture discrepancies.   
– Lagrangian models lead to errors in gas momentum exchange 

• Error cascades to affect breakup and vaporization models 
– Eulerian models don’t necessarily predict evaporation well either 

• To accurately validate evaporating sprays, we need a validation 
methodology that responds to changes in the mixing and evaporation 
rate appropriately. 

• Liquid volume fraction is physically consistent with extinction and 
scattering measurements AND drops rapidly near the liquid length. 

• High quality extinction measurements may help. 

Conclusions from Spray A parametric modeling study: 



Spray A Multiple Injections 

Modeling 
CMT: Adrian Blanco, Raul Payri 

Polimi: Tommaso Lucchini, Gianluca D’Errico 
Experiments 

Sandia: Julien Manin, Scott Skeen, Lyle Pickett 
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Spray A multiple injection target conditions 

O2 [%] Tamb [K] ρamb [kg/m3] Pinj [bar] 

Standard Spray A  0 900 22.8 1500 

Split Injection 0.5 ms – 0.5 ms dwell – 0.5 ms Pilot-Main 0.3 ms – 0.5 ms dwell – 1.2 ms 

• Same model setup as parametric study.  Nozzle 675. 
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Multiple injection simulations compare well between 
institutions and with Sandia vapor penetration data. 

CMT 
PoliMi 

Split Injection 0.5 ms – 0.5 ms dwell – 0.5 ms Pilot-Main 0.3 ms – 0.5 ms dwell – 1.2 ms 

Sandia 
vapor data 
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Transient mixing process is well matched between CMT and 
PoliMi downstream of liquid regions. 



Spray B  

Experiments 
CMT: Alberto Viera, Raul Payri 

Nozzle 211200 
Sandia: Julien Manin, Scott Skeen, Lyle Pickett 

KAIST: Yongjin Jung 
Nozzle 211201 
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Simultaneous Mie scatter and DBI at CMT 

Continuous light source 

Blue LED 

HS Camera 
Mie-scatter 
32 kfps HS Camera with long-range 

microscopic lens 
DBI 
82.1 kfps 
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Two different liquid penetration 
measurement techniques and two 
spray orientations: 
 
•Horizontal Configuration 

– Mie scattering: Phantom v710, 
105 mm, f/2.8, 80 kfps 
 

•Vertical Configuration 
– Diffused back illumination (DBI), 

Photron, 100 kfps 

Mie scatter and DBI imaging at Sandia 
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Sandia has shown that liquid penetration profile is correlated 
with transient spreading angle behavior. 

Jung et al. SAE 2015-01-0946 
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CMT also measures a transient liquid penetration rate, but 
with a shorter penetration length. 
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• First look at modeling multiple injections: predictions of mixture 
profiles and transient behavior is not any worse that steady-state Spray 
A.   
– Near-nozzle mixture discrepancies, but these are rapidly diffused by 

vaporization and transient mixing process. 
Spray B measurements: 
• Transients in measured liquid penetration is well correlated with 

transient spreading angle behavior. 
• Measurements at CMT display similar transient behavior, but injection 

conditions are different so it’s hard to make further conclusions. 
• Seems to be a consistent trend that CMT measures shorter LL’s than 

Sandia. 
• Modeling of the transient behavior will require more than the usual 

Lagrangian spray modeling approach. 
 

Moving forward with Spray A multiple injections and Spray B: 



36 

• Old news revisited: Validation of evaporating sprays solely against 
liquid and vapor penetration measurements does not adequately 
validate the evaporation process. 

• Somewhat old news revisited: It is difficult to isolate effects of spray 
model choices on near-nozzle mixture discrepancies.   
– Lagrangian models lead to errors in gas momentum exchange 

• Error cascades to affect breakup and vaporization models 
– Eulerian models don’t necessarily predict evaporation well either 

• To accurately validate evaporating sprays, we need a validation 
methodology that responds to changes in the mixing and evaporation 
rate appropriately. 

• Liquid volume fraction is physically consistent with extinction and 
scattering measurements AND drops rapidly near the liquid length. 

• High quality extinction measurements may help. 

Conclusions from Spray A parametric modeling study: 
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EXTRA SLIDES 
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ECN4: Fredrick Westlye will provide us an update on this topic next!  

Some history: We’ve made several attempts to standardize 
liquid length measurements within the ECN. 

ECN3:  Still differences in measured LL between institutions. 
No significant advancement of “standardized”  

LL measurement method. 
Spray A Measured Liquid Length 

Sandia - 675 CMT - 675 IFPen - 678 TU/e - 679 

11.7 9.7 10.5 10.3 

Parametric Spray A Conditions 

Sandia - 675 CMT - 675 ∆ 

900 K, 7.6 kg/m3 16.0 22.8 43% 

700 K, 22.8 kg/m3 14.5 17.6 21% 
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