

ECN 5 Topic 8: Internal & Near Nozzle Flow Modeling Spray G

Organizer, Presenter: David P. Schmidt Chinmoy K. Mohapatra UMass, Amherst O Presentation Contents

- Modelling Approaches
 - Simulation Techniques
 - Boundary Conditions
 - Meshing
- ECN 5 Simulation Results
 - Injector coefficients and ROI comparison
 - Representative contour plots
 - Comparison with Experimental LVF.
- Next Steps for Spray G
 - Updated geometry
 - Needle closure, multiple injections
 - Encouraging more contributors!

ECN 5.0 Contributors

- Three institutions contributed simulation results
 - University of Massachusetts-Amherst and General Motors
 - Eli Baldwin, Chinmoy Mohapatra, David Schmidt (UMass)/Ronald Grover (GM)
 - * Results published in International Journal of Multiphase Flow, 87 (2016) 90-101
 - CD-Adapco, A Siemens Business, UK
 - Samir Muzaferija, Kshitij Neroorkar, Dimitrios Papoulias
 - Argonne National Laboratory and Convergent Science Inc.
 - Kaushik Saha, Sibendu Som, Michele Battistoni (ANL)/ Yanheng Li, Eric Pomraning, and P.K. Senecal (Converge)

*Results published in SAE International Journal of Engines, SAE 2016-01-870

- New Geometry Results
 - Dan Duke et al., SAE 2017-01-0824, to be presented Thursday morning
- Acknowledgement
 - GridPro

Condition	SprayG	SprayG2
Fuel	Isooctane	Isooctane
Injection Pressure	20 MPa	20Mpa
Fuel Temperature	90° C (363.15 K)	90° C (363.15 K)
Ambient	300° C (573.15 K)	60° C (333.15 K)
Temperature		
Ambient Density	3.5 kg/m ³	0.5 kg/m ³
Back Pressure	600 kPa (N ₂)	50 kPa (N ₂)
Injected Quantity	10 mg	
Injection Duration	780 µs ("actual")	780 µs ("actual")

Modelling Approaches

Internal Modeling Codes

Institution	UMass/GM CD-Adapco		ANL/Converge	
Code	HRMFoam	STAR-CCM+	Converge	
Origin	UMass	CD-Adapco	Convergent Science	
External Coupling	Eulerian	Eulerian	Eulerian	
Modelled	Both (Spray G and Spray G2)	Spray G2	Both (Spray G and Spray G2)	

Approaches

Institution	UMass/GM	CD-Adapco	ANL/Converge
Liquid fuel	Iso-Octane	Iso-Octane	Iso-Octane
Equation of State	Compressible	IC fuel, IG N2	Compressible
Cavitation Enabled?	Yes	Yes	Yes
Model For Phase change	Homogenous Relaxation	Homogenous Relaxation	Homogeneous Relaxation
Turbulence	RANS k-Omega SST	RANS K-Omega SST	RANS K-epsilon
Spatial Discretization	2 nd order	2 nd order	2 nd order
Fuel Properties	REFPROP (input table)	NIST	CONVERGE, Dymond et al. 1985
Ambient Properties	Ideal Gas	Ideal Gas	Ideal Gas
Liquid/Gas interface	Eulerian, diffuse- interface (i.e., pseudo-fluid)	VOF	Eulerian, Mixture Model
Heat Transfer Enabled?	No; fuel is isenthalpic	Yes	Yes

Computational Domain

Institution	Umass/GM	CD-Adapco	ANL /Converge
Dimensionality	3	3	3
Cell Type	Hexahedral with anisotropic refinement between needle and wall	Hex & prism cells + wall layers	Cut-cell Cartesian Cubic Types
Meshing Tool	Grid Pro	STAR CCM+	Converge Meshing
Cell count (total interior and exterior)	1.5 million	8 million	2.8 & 4.5 million
Adaptive or Static Refinement?	Static	Static	Static
Needle motion?	Yes	No	No
Initial Needle lift	5 µm	Full needle lift	10%,50%, 100% of full needle lift
Geometry	"Ideal" geometry with 9mm plenum	"Ideal" geometry with 9mm plenum	"Ideal" geometry with 18mm plenum

Boundary Conditions

Institution/Code	UMass	CD-Adapco	ANL/Converge
Time Accurate ROI Profile?	Predicted	No	No
Inlet	Constant Pressure	Constant Pressure	Constant Pressure
Wall BCs	L.O.W.	L.O.W.	L.O.W.
Needle motion?	Yes (Needle motion in all three directions)	No	No

Needle Lift Measurements for Spray G #28

680 μs commanded injection at 190 bar/300K into N_2 at STP

Data and figure provided by Dan Duke at Argonne National Lab

Needle Lift Measurements for Spray G #28

680 μs commanded injection at 190 bar/300K into N_2 at STP

Data and figure provided by Dan Duke at Argonne National Lab

31st March – 1st April, 2017

ECN 5: Spray G – Internal Flow Modelling

ECN 5.0 Computational Mesh

ECN 5.0 Computational Meshes

UMass/GM

- Transient lift and wobble based upon ensemble averaged Argonne measurements
- Laplacian smoothing for mesh motion
- 10 μm and 7 μm grid spacing in the sac and nozzle hole

Simulation Results

ECN Hole Orientation & Numbering

Spray G Convention

- 1. Terminology
 - Fuel \rightarrow liquid + vapor
 - Ambient \rightarrow non-condensable gas
- 2. Injector Coefficients
 - C_D (individual hole & injector averaged)
- 3. Rate Of Injection
 - Individual hole and overall
- 4. 2-D Contour plots and animations for both flashing and non flashing condition
 - Z= 2 mm (downstream of the nozzle)
 - Spherical cut plane at the nozzle exit and counter bore exit

Hole to hole variation in C_D and ROI

ECN ROI Prediction

31st March – 1st April, 2017

ECN Injector coefficients

	Hole #	UMass/GM (SprayG)	UMass/GM (SprayG2)	CD-Adapco (SprayG2)
	1	0.51	0.51	0.53
	2	0.50	0.50	0.53
	3	0.49	0.51	0.51
Individual hole C _D	4	0.52	0.52	0.53
	5	0.52	0.53	0.52
	6	0.49	0.50	0.53
	7	0.50	0.50	0.53
	8	0.51	0.51	0.51
Overall Injector	C _D	0.51	0.51	0.52

GM Measurement(ECN4) $C_D \simeq 0.52$

* To calculate C_D UMass has taken time average of mass flow rate over the period of 0.2ms-0.6ms

ECN Total Injected Mass

Ulviass/Givi				
	Spray G Just	Spray G w/	Spray G2 Just	Spray G2 w/
	Lift [mg]	Wobble [mg]	Lift [mg]	Wobble [mg]
Hole 1	1.29	1.30	1.28	1.29
Hole 2	1.25	1.25	1.31	1.27
Hole 3	1.26	1.25	1.29	1.28
Hole 4	1.29	1.27	1.27	1.29
Hole 5	1.27	1.29	1.25	1.31
Hole 6	1.27	1.27	1.28	1.29
Hole 7	1.29	1.26	1.27	1.28
Hole 8	1.32	1.29	1.28	1.28
Total	10.24	10.17	10.24	10.29

3

- Agrees well with 10 mg injected mass target
- The hole to hole variation in total injected mass is the order of 1-2%
- Wobble does not effect in a consistent way

ECN 5: Spray G – Internal Flow Modelling

ECN Total Injected Mass

CD-Adapco

GM

<u>Flashing</u>

Flashing

Non-Flashing

- Near-tip visualized with high-speed CCD camera with long-distance microscope (Parrish, GMRC)
- Volume-rendered simulations
- Fuel fills counter-bore in flashing case
- What is causing the oscillations in the spray???

UMass/GM

<u>Comparison of Spray G (Non-</u> Flashing) results between different

sources

Spray G (Spherical cut planes at nozzle and counterbore exit)

<u>ECN</u>

ECN Time averaged LVF at Z=2mm

ECN Time averaged LVF v/s Radial Distance

Experimental data provided by Katie Matusik at Argonne National Lab

<u>Comparison of Spray G2 (Flashing)</u> results between different sources

EGN Spray G2 hole – hole variation

The semi transparent iso surface represents pressure values below the vapor pressure

ECN Spray G2 (Z= 2mm)

31st March – 1st April, 2017

ECN 5: Spray G – Internal Flow Modelling

Flashing v/s Non-Flashing

ECN Flashing v/s Non-Flashing (nozzle and counter bore exit)

ECN Flashing V/S Non-Flashing (Z=2mm)

Sac Flow and Hole-hole variation

ECN Exploration of hole to hole variation (Vorticity /Spray Connection)

UMass/GM

ECN Vortical structure in SAC

UMass/GM

- 1. Unterminated
- 2. Semi-terminated
- 3. Fully-terminated

 Iso Surface of 14 Mpa total pressure colored by static pressure with velocity streamlines colored by velocity magnitude. Taken midway through flashing simulation. Vortices contained in the sac can be seen to terminate on a wall or they can be entrained into one or two nozzle holes

ECN Flow crossing the SAC

UMass/GM

Adverse pressure gradient induces vorticity into flow

31st March – 1st April, 2017

UMass/GM

- Helicity = Vorticity dot U
- Counter-rotating vortices can share holes
- Co-rotating vortices are unstable

UMass/GM

- String flash-boiling
- Perturbation of spray angle

31st March – 1st April, 2017

ECN Mass Flow Rate: Mystery Solved

Hole 5 ROI and Avg. Density vs. Time <u>5</u> 2.5 600 at FaceZone Rate or Injection [g/s] 500 2 400 1.5 **UMass/GM** 300 1 Density 200 0.5 100 Avg. 0 n 0.1 0.2 0.5 0.6 0.7 0.8 0 0.3 0.4 Time [ms] Hole 8 ROI and Avg. Density vs. Time Avg. Density at FaceZone [kg 600 2.5 Rate or Injection [g/s] 500 2 Hole to Hole ROI variation 400 1.5 follows the variation of Avg. 300 Mixture Density. 200 0.5 100 0 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ECN Internal Vapor Generation

UMass/GM

- Implications for IC of next injection event
- Could cavitation here degrade the needle/seat?

31st March – 1st April, 2017

ECN 5: Spray G – Internal Flow Modelling

<u>Computations with Updated</u> <u>Geometry</u>

- Do the small-scale manufacturing defects and variabilities matter?
- 40 μm resolution from neutron imaging, 2 μm from x-ray imaging
- Non-flashing, submerged in iso-octane @ 5.8 bar

• Duke et al / SAE Int. J. Fuels Lubr. / Volume 10, Issue 2 (June 2017)

31st March – 1st April, 2017

ECN 5: Spray G – Internal Flow Modelling

ECN 5.0 Modeling Details

- HRMFoam (UMass)
- Static needle
- Time-varying upstream pressure
- Realizable k-eps turbulence model
- Using "snappyHexMesh" tool in OpenFOAM (hexahedral cut cells)
- Final mesh 13.7 M cells, minimum cell size 1.6 μm

CFD Mesh

ECN

31st March – 1st April, 2017

ECN 5: Spray G – Internal Flow Modelling

CFD Density Field

• T = +68 μs

CFD velocity Field

• T = +68 μs

CFD pressure Field

• T = +68 μs

- Holes with nice sharp edges cavitate strongly
- Inclusions near the turning corner suppress cavitation!
 - High density, high pressure fluid recirculations inside the inclusion
 - This has an effect on hole discharge
- We have seen evidence in x-ray radiography data that Cd varies from hole to hole

Pressure (MPa` 20.0

ECN Foreshadowing ... Needle Closure- Multiple Injection

31st March – 1st April, 2017

ECN 5: Spray G – Internal Flow Modelling

ECN Needle Closure- Multiple Injection(Flashing)

Spray G2

31st March – 1st April, 2017

Models can predict mass flow rate/Cd

• The sac is home to powerful vortices

• Highly transient variation, transition to swirl

• Need to include real geometry

• Bonus slides

ECN Time averaged Density at Z=2mm

ECN Time averaged Mixture Density v/s Radial Distance

