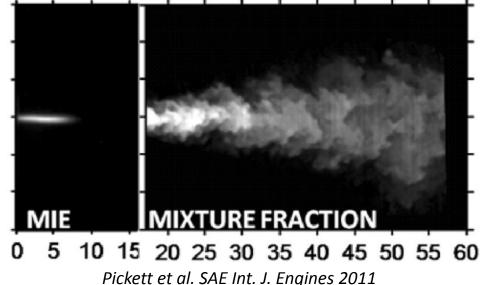


Topic 3: High-speed mixing measurements

Julien Manin Sandia National Laboratories Artium Technologies

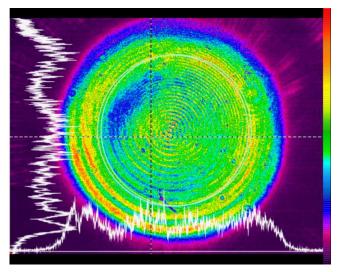

Fifth Workshop of the Engine Combustion Network, Detroit, Michigan, March 2017

- Motivation and previous work
- High-speed Rayleigh scatter laser and imaging systems
- Spray vessel and injection system
- Rayleigh scatter advanced image processing
- Quantitative mixing measurements
- Summary and future work

ECN Motivation and previous work

- Mixture preparation is considered the back-bone of combustion
- Mixing experiments are difficult under relevant thermodynamic and injection conditions like Spray A
- Mixing measurements at Spray A have been performed at Sandia a few years back
 - But transient information has been lacking mainly due to equipment limitations
 - Other issues effectively limited the optical resolution of the system

- Despite these limitations, this dataset has been used extensively for model validation beyond the thermal engine application boundaries
- New equipment such as high-speed lasers or imaging systems can extend experimental capabilities for mixing measurements under relevant conditions
 - > Transient mixing field is a preliminary step towards predicting ignition
 - Variance quantification is another important parameter to turbulence modeling

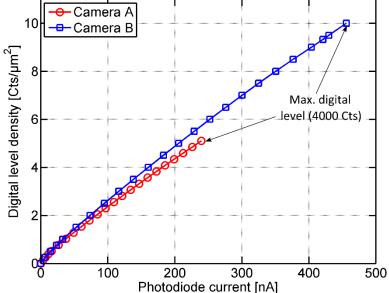


- Motivation and previous work
- High-speed Rayleigh scatter laser and imaging systems
- Spray vessel and injection system
- Rayleigh scatter advanced image processing
- Quantitative mixing measurements
- Summary and future work

ECN High-power pulsed burst laser system

- High repetition rate seed laser followed by three multi-pass amplification stages
 - Q-switched diode-pumped Nd-YAG seed laser operated at 100 kHz
 - Diode-pumped resonators with 2 and 5 mm diameter rods for the first two stages (Nd-YAG)
 - Final stage uses 10 mm rods in two legs to reduce beam energy on amplifiers
 - Over 70 mJ/pulse capabilities (7 kW)
- Relay imaging of the beam and spatial filtering done throughout the laser path
- KTP crystal used on both legs for harmonic generation (532 nm)
 - Single leg pulse energy was enough
 - Relay imaged to sheet-forming optics
 - 20-mm wide laser sheet (approx. 15 to 35 mm from the injector)

Parameter	Quantity
Frequency	100 kHz
Burst duration	5 ms
Pulse width	4 – 8 ns
Wavelength	532 nm
Pulse energy	15 mJ
Polarization	Horizontal



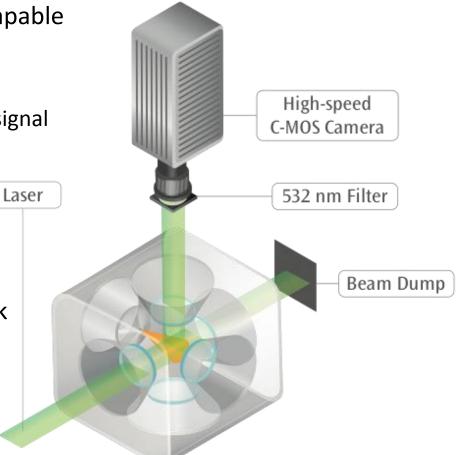
Laser design team: Scott Bisson, Brian Patterson and Jonathan Frank

ECN High-speed imaging system

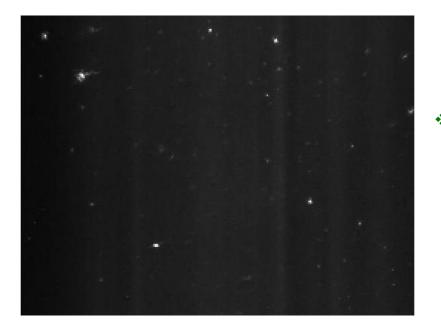
- * The design and development of a high-speed imaging system was investigated
 - But CMOS-based high-speed cameras evolve too quickly to justify designing and building a specific imaging system
- The selected camera features higher light sensitivity and smaller pixels than the competition
- Raw images are corrected for intensity linearity and lens vignetting for accurate signal quantification prior to post-processing

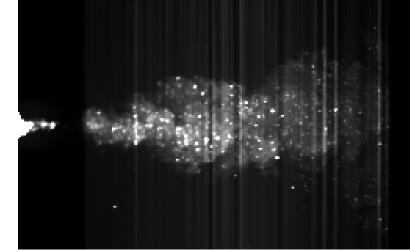
Parameter	Quantity
Framerate	100 kfps
Resolution	384 x 264 pix ²
Camera lens	58 mm – f/1.2
Close-up lens	2 diopters
Scale factor	78 μm/pix
Spectral filter	532 nm (BP 10 nm)

- Camera mounted perpendicular to the jet to acquire Rayleigh scattered signal through the top-mounted optical access of the vessel
- Heat-shielding and liquid cooling system were implemented to keep the lens cooled to avoid thermal stress and image deformation


March 2017

- Motivation and previous work
- High-speed Rayleigh scatter laser and imaging systems
- Spray vessel and injection system
- Rayleigh scatter advanced image processing
- Quantitative mixing measurements
- Summary and future work


ECN Spray vessel and conditions

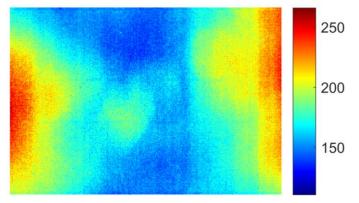

- High-temperature and high-pressure capable optically-accessible combustion vessel
 - > 35 MPa 1800 K peak conditions
 - Sapphire window for Rayleigh scatter signal acquisition
 - Fused-silica window slits for laser input and output
 - Recessed and baffled window design with AR-coating to reduce reflections
- Vessel surfaces coated with matte black paint to minimize surface reflections
- Spray A inert conditions were tested:
 - > Ambient temperature: 900 K
 - > Ambient pressure: 6.0 MPA
 - > Environment composition: 90 % N_2 , 6 % CO_2 , and 4 % H_2O , 0 % O_2
 - Spray A injector (serial # 210370) at 150 Mpa, 1.5 ms injection duration

ECN High-precision fuel system

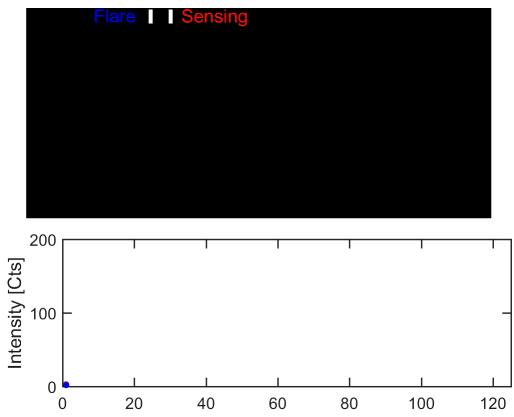
- Rayleigh scatter imaging aims at quantifying molecules, and is dependent to the sixth order on particle size
- Liquid droplets or particles in the ambient or fuel will contaminate the signal from the probed molecules
 - Past experiments suffered from particle contamination from the fuel
 - Solid particles from nozzle deposit have been observed in the head of the spray

- New high-pressure fuel system with highprecision syringe pump
 - Fuel has been filtered through 100 nm membrane filters to remove particles
 - High-pressure in-line 0.5 µm filter to stop solid contaminants from the fuel lines
 - > Some particles still remain

- Motivation and previous work
- High-speed Rayleigh scatter laser and imaging systems
- Spray vessel and injection system
- Rayleigh scatter advanced image processing
- Quantitative mixing measurements
- Summary and future work


ECN Particle removal and signal recovery

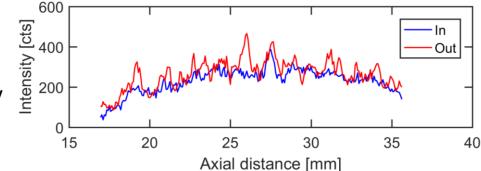
- The high-precision fuel system considerably reduced the amount of particles and/or scatterers
- Image treatment is still necessary to eliminate the remaining particles, which would affect measurement quantities
 - The image processing routine first identifies the particles present on every image
 - > Two-dimensional local inpainting is then used to recover the image intensity behind each particle
- No spatial filtering is applied to the image globally
 - But inpainting effectively smoothens the region covered by a particle
 - Most particles being small, the smoothing is spatially limited in practice
- This process has demonstrated to leave the rest of the image unaffected
 - Superior to previously applied method such as spatial filtering and global inpainting



ECN Dynamic flare compensation

- Background flare has a considerable effect on fuel concentration quantification and is laser intensity-dependent
 - > Shot-to-shot laser intensity is important and needs to be accounted for
 - Flare needs to be adjusted on a spatial and temporal basis for accurate mixing measurements
- Flare map has been obtained with vessel empty (no pressure)

- A sensing region to monitor flare provided the best results
 - 2-D background flare map is adjusted thanks to the sensing region



March 2017

ECN Spatial laser distribution and beam steering

- Laser intensity varies from shot-toshot and needs to be quantified
 - Beam steering also affects intensity

- A first method is based on parallel interpolation and corrects laser intensity variations and beam steering simultaneously
 - Detects jet boundary and extract the Rayleigh signal intensity from the ambient on both sides of the jet
 - Parallel interpolation is performed linearly along the laser sheet to produce the ambient reference intensity
- A second approach applies a wavelet filter to reduce beam steering effects on signal intensity
 - > Normalizes the signal intensity prior to the jet
 - Wavelet filtering is applied along the laser path to account for intensity variations in the jet region

March 2017

ECN Mixture and temperature quantification

- Rayleigh scattering can be used to quantify small particles (molecules) such as fuel vapor
 - > Proportional to molecule number density and scattering cross-section of a species

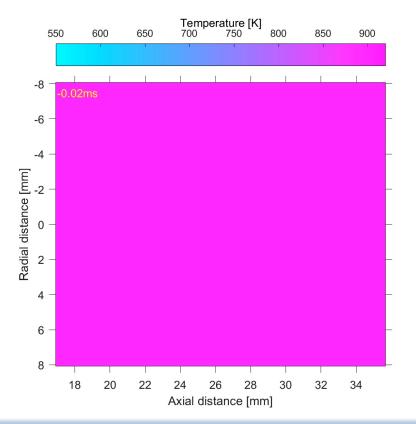
$$I = I_0 \cdot \mathcal{M} \cdot \mathcal{H}_{opt} \cdot \mathcal{H}_{opt}$$

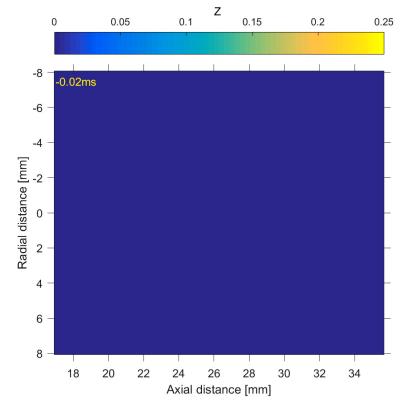
The equivalent Rayleigh cross-section of a mixture is proportional to the molar fraction and cross-section of the species

$$\mathcal{S}_{mix} = X_{fuel} \times \mathcal{S}_{fuel} + X_{amb} \times \mathcal{S}_{amb}$$

- > Because the chamber only contains ambient gases and injected fuel: $X_f + X_a = 1$
- The Rayleigh scattered intensity in the ambient is used as reference to selfcalibrate the fuel – ambient signal

$$\frac{I_{mix}}{I_{amb}} = \frac{\frac{S_{fuel}}{S_{amb}} + \frac{N_{amb}}{N_{fuel}}}{\frac{N_{amb}}{N_{fuel}} + 1} \frac{T_{amb}}{T_{mix}}$$

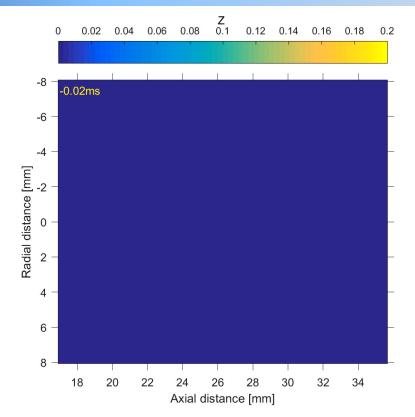

* Adiabatic mixing can be applied to assess the temperature of the fuel and ambient mixtures T_{mix} in the jet



- Motivation and previous work
- High-speed Rayleigh scatter laser and imaging systems
- Spray vessel and injection system
- Rayleigh scatter advanced image processing
- Quantitative mixing measurements
- Summary and future work

ECN Time-resolved instantaneous fields

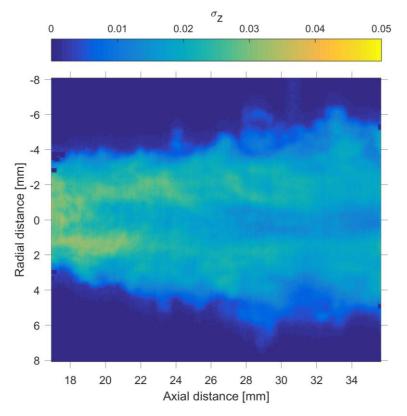
- Time resolved 2-D mixture fraction maps for Spray A
 - Highlight the turbulent nature of the mixing process in diesel jets
 - Jet progression shows large structures reentrainment

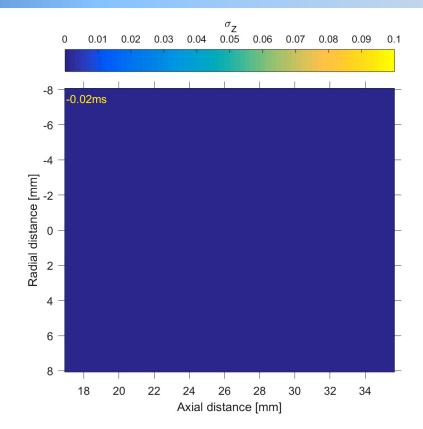

- Adiabatic temperature maps provides information regarding the temperature of the mixture
 - Along with mixing parameters, temperature is important to determine autoignition
 - > Relevant for thermodynamic state (transcritical)

March 2017

ECN Average mixture and temperature fields

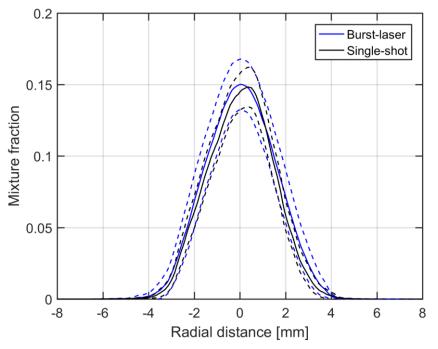
- Time-resolved fields averaged over 10 repetitions
 - Detailed mixing features no longer observed
 - Mixing distribution seems locationdependent more than transient

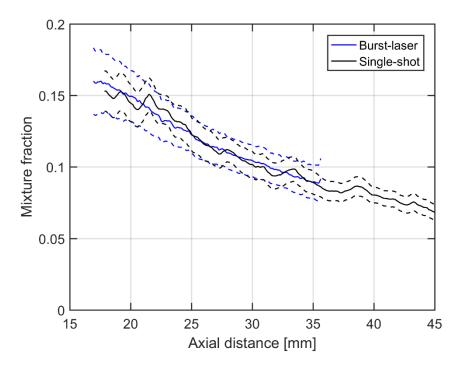




- Mean mixing fields are useful for comparison to models, especially RANS
 - Averaged fields previously required weeks of experiments
 - More repetitions are necessary to reduce statistical variation between injections

- Time-dependent standard deviation across repetitions shows high variability
 - Jackknife resampling used to enhance statistical confidence
 - Combination of repetition repeatability and jet turbulence

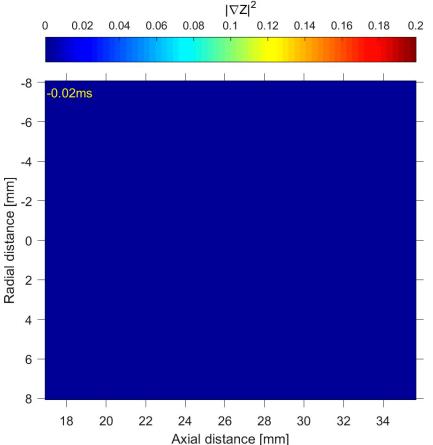




- Standard deviation over quasi-steady period is lower for a single injection
 - Variability should be compared to mean mixture
 - Shows higher relative dispersion on the jet boundaries

ECN Profile comparisons to previous dataset

- Mean mixture fraction axial profile matches that of previous experiments
 - Good agreement between datasets
 - Standard error calculated across repetitions
 - Variations may be expected because of the different injector units used


- Radial profiles also show similar mixing quantities
 - Again, mixture fraction profiles are well within uncertainty for both campaigns
- The good match between datasets provides confidence with the highspeed measurements

- Motivation and previous work
- High-speed Rayleigh scatter laser and imaging systems
- Spray vessel and injection system
- Rayleigh scatter advanced image processing
- Quantitative mixing measurements
- Summary and future work

ECN Summary and future work

- Specific equipment has been assembled to allow planar laser Rayleigh scattering imaging measurements in evaporative diesel jets at high-speed
- Advanced image processing methodologies were implemented to mitigate the effects of particle contamination, two-dimensional flare, laser intensity variation and beam steering
- Time-resolved mixing and temperature measurements are available for Spray A
 - Ensemble and temporal average data
 - Mixing variability
 - Time-resolved results compare well with previous dataset
- Detailed mixing quantities are ready for comparisons to high-fidelity CFD simulations
 - Scalar dissipation rate
 - Turbulent length scale
 - Dissipative structure orientation

Topic 3: High-speed mixing measurements

Thank you for your attention

Julien Manin jmanin@artium.com

Fifth Workshop of the Engine Combustion Network,

Detroit, Michigan, March 2017