ENGINE COMBUSTION NETWORK

ECN6 Topic 9 :

Internal and Near Nozzle Flow Gasoline Spray

Organizer & Presenter:

David P. Schmidt Chinmoy K. Mohapatra UMass, Amherst

CONTRIBUTORS

- David Schmidt, Chinmoy Mohapatra, UMass, Amherst
- Pedro Marrtí, María Martínez, CMT-Motores Térmicos
- Dimitrios Papoulias, Samir Muzaferija, Kshitij Nerrorkar, Siemens CD Adapco
- Zongyu Yue, Sibendu Som, Argonne National Laboratory
- Boxiong Chen, Michael Oevermann, Chalmers University
- Balalji Mohan, Hong G. Im, Jihad A Badra, KAUST
- Mathis Bode, RWTH Aachen University

PRESENTATION CONTENTS

- Modelling Approaches
 - Simulation Techniques
 - Boundary Conditions
 - Meshing
- ECN 6 Simulation Results
 - ROI comparison
 - Hole-Hole Rate of Injection comparison
 - Hole-Hole variation at Z = 2mm plane
 - Representative contour plots
- Next Steps for Gasoline sprays
 - Encouraging more contributors for experiments, new models for CFD

SPRAY G , G2 , G3 NOMINAL OPERATING CONDITIONS

Condition	SprayG	SprayG2	SprayG3
Fuel	Isooctane	Isooctane	Isooctane
Injection Pressure	20 MPa	20MPa	20MPa
Fuel Temperature	90° C (363.15 K)	90° C (363.15 K)	90° C (363.15 K)
Ambient Temperature	300° C (573.15 K)	60° C (333.15 K)	60° C (333.15 K)
Ambient Density	3.5 kg/m ³	0.5 kg/m ³	1.2 kg/m ³
Back Pressure	600 kPa (N ₂)	50 kPa (N ₂)	100 kPa (N ₂)
Injected Quantity	10 mg	10 mg	10 mg
Injection Duration	780 µs ("actual")	780 µs ("actual")	780 µs ("actual")

MODELING APPROACHES

INTERNAL MODELING CODES

Institution	UMass	CD- Adapco	CMT Converge	CMT CCM+	ANL	Chalmers	KAUST
Code	HRMFoam	STAR- CCM+	Converge	STAR- CCM+	Converge	SchnerrSauer	Converge
Origin	UMass	CD- Adapco	Convergent Science	CD- Adapco	Convergent Science	Chalmers	Convergent Science
External Coupling	Eulerian	Eulerian	Eulerian	Eulerian	Eulerian	Eulerian	Eulerian
Cases	Spray G, G2	G, G2	G,G2,G3	G	G	G	G

APPROACHES

Institution	UMass	CD- Adapco	CMT Converge	СМТ	ANL	Chalmers	KAUST
Liquid Fuel	lso- Octane	Iso- Octane	Iso-Octane	lso- Octane	Iso-Octane	lso- Octane	Iso-Octane
Compressibility	Yes	No	Yes	No	No	No	Yes
Cavitation	Yes	Yes	Yes	Yes	No	Yes	Yes
Phase Change Model	HRM	HRM	HRM	HRM	No	Rayleigh- Plesset	HRM
Turbulence	k-ω SST	k-ω SST	k-ε RNG	k-ω SST	LES dynamic structure	LES Smagorin sky	k-ε RNG (Cε1 = 1.1)
Spatial DIscretization	2 nd order	2 nd order	1 st order	1 st order	-	1 st order	-
Fuel Properties	REFPROP	NIST	CONVERGE, Dymond et al. 1985	Star CCM+	CONVERGE	Dymond et al.,NIST	CONVERGE

APPROACHES

Institution	UMass	CD- Adapco	CMT Converge	CMT CCM+	ANL	Chalmers	KAUST
Ambient Properties	Ideal Gas	ldeal Gas	Ideal Gas	Ideal Gas	Ideal Gas	Liquid Fuel	Ideal gas
Liquid/Gas interface	Eulerian, diffuse- interface (Pseudo fluid)	Volume of Fluid - Mixture type approach	VOF	VOF	VOF-PLIC	HEM	VOF
Heat transfer	No, Isenthalpic	Adiabatic	Isothermal	Isothermal	Adiabatic	Isothermal	Isothermal

COMPUTATIONAL DOMAIN

Institution	UMass	CD- Adapco	CMT Conv.	CMT CCM+	ANL	Chalmers	KAUST
Dimensionality	3	3	3	3	3	3	3
Cell Type	Hexahedral with anisotropic refinement between needle and wall	Hex & prism cells+ wall layers	Hex + wall layers	Hex & poly hedra with wall layers	Hex + wall layers	Hexa- hedral cells	Hex + wall layers
Meshing Tool	Grid Pro	Star CCM+	Converge	Star CCM+	Converge	Grid Pro(refined)	Converge
Cell Count	1.5 million	8 million	1 million	11.4 million, 5.08 million	-	9.8 million	-
Adaptive or static refinement	Static	Static	AMR	Static	AMR	Static	AMR

ENGINE COMBUSON NETWORK

GEOMETRY AND BOUNDARY CONDITION

Institution	UMass	CD- Adapco	CMT Conv.	CMT CCM+	ANL	Chalmers	KAUST
Initial lift	5 µm	50 µm	2 µm	50 µm	5 µm	50 µm	2 µm
Needle Motion	Yes	No	Yes	No	Yes	No	Yes
Geometry	Gen 1 with 9mm plenum	Gen 1 with 9 mm plenum	Gen 1 with 6 mm plenum	Gen 1 with 9 mm plenum	Realistic geometry X-Ray	Gen1	Gen 2
Time Accurate ROI Profile?	Predicted	No	Predicted	No	Predicted	No	Predicted
Inlet	Constant Pressure	Constant Pressure	Constant Pressure	Constant Pressure	Constant Pressure	Constant Pressure	Constant Pressure
Wall BCs	L.O.W.	L.O.W.	L.O.W.	L.O.W.	L.O.W.	-	L.O.W.
Needle Closure	Yes	No	No	No	No	No	No

NEEDLE LIFT

Needle Lift Measurements for Spray G #28

680 μs commanded injection at 190 bar/300K into $N_{\rm 2}$ at STP

Data and figure provided by Dan Duke at Argonne National Lab

COMPUTATIONAL MESH (UMASS)

- Transient lift based upon ensemble averaged Argonne measurements
- Laplacian smoothing for mesh motion
- 10 µm and 7 µm grid spacing in the sac and nozzle hole

COMPUTATIONAL MESH (CD-ADAPCO)

Inside the nozzle holes, the sacvolume and along the vicinity of the spray jets the mesh is refined with cells which ranged from 5 to 25 µm in size, respectively

HEXAHEDRAL MESH (CMT- STARCCM+)

Base size	140 µm
Cells	11.44 millions
Prism Layer	3
Layer Total Thickness	8.75 µm

Surface Control:

- Minimum cell size: 17.5 µm
- Surface Growth Rate: 1.05
- Trimmer Surface Growth Rate: Medium

Volumetric Control:

- Minimum cell size: 8.75 µm

POLYHEDRAL MESH (CMT- STARCCM+)

Base size	60 µm
Cells	5.08 millions
Prism Layer	3
Layer Total Thickness	8.625 μm

Surface Control:

- Minimum cell size: 18 µm
- Surface Growth Rate: 1.05

Volumetric Control:

- Minimum cell size: 18 µm

COMPUTATIONAL MESH (CMT- CONVERGE)

ENGINE COMBUSTING NETWORK

ANL CONVERGE

- Red surface: X-ray scanned realistic geometry (1.7 µm resolution)
- Immediately adjacent holes simulated at low resolution

CHALMERS OPENFOAM

SIMULATION RESULTS

INTERNAL OBSERVATIONS

Iso-surface of 14MPa total pressure, streamlines

CCM+ CD Adapco

Similar to vorticity seen in Baldwin et al. 2016

ROI, MOMENTUM RATE MEASUREMENT LOCATION (NOZZLE EXIT PLANE)

RATE OF INJECTION – SPRAY G

RATE OF INJECTION – SPRAY G2

NCG RATE OF INJECTION

VAPOR RATE OF INJECTION

RADIALLY AVERAGED LVF AT 2MM COMPARED TO EXPT.

- Experiment is with viscor under nonflashing conditions
- Simulation is with flashing conditions

"Eulerian modeling of flash-boiling in multihole gasoline nozzles using the homogeneous relaxation model" by Papoulias et al. 2018

ROI – HOLE 1

Spray G

Spray G2

MOMENTUM RATE – HOLE 1

Spray G

Spray G2

ROI – HOLE 2

Spray G

Spray G2

MOMENTUM RATE – HOLE 2

Spray G

Spray G2

ROI – HOLE 3

Spray G

Spray G2

MOMENTUM RATE – HOLE 3

Spray G

Spray G2

Spray G

Spray G2

MOMENTUM RATE – HOLE 4

Spray G

Spray G2

ROI – HOLE 5

Spray G

Spray G2

MOMENTUM RATE – HOLE 5

Spray G

Spray G2

ROI – HOLE 6

Spray G

Spray G2

MOMENTUM RATE – HOLE 5

Spray G

Spray G2

ROI – HOLE 6

Spray G

Spray G2

MOMENTUM RATE – HOLE 6

Spray G

Spray G2

ROI – HOLE 7

Spray G

Spray G2

MOMENTUM RATE – HOLE 7

Spray G

Spray G2

ROI – HOLE 8

Spray G

Spray G2

MOMENTUM RATE – HOLE 8

Spray G

Spray G2

TIME AVERAGED QUANTITIES AT Z = 2MM

TIME AVERAGED QUANTITIES AT Z= 2MM (HOLE1-HOLE5)

TIME AVERAGED QUANTITIES AT Z= 2MM(HOLE1-HOLE5)

TIME AVERAGED QUANTITIES AT Z= 2MM(HOLE2-HOLE6)

TIME AVERAGED QUANTITIES AT Z= 2MM(HOLE3-HOLE7)

TIME AVERAGED QUANTITIES AT Z= 2MM(HOLE3-HOLE7)

TIME AVERAGED QUANTITIES AT Z= 2MM(HOLE4-HOLE8)

TIME AVERAGED QUANTITIES AT Z= 2MM(HOLE4-HOLE8)

TIME AVERAGED TEMPERATURE (Z=1MM)-UMASS HRMFOAM

Spray G

Spray G2

TIME AVERAGED TEMPERATURE (Z=1MM)-CMT CONVERGE

Spray G

Spray G2

AverageTemperature

363

354

346 338

330

TIME AVERAGED TEMPERATURE (Z=1MM)-CHALMERS

Zhang, Gaoming, David LS Hung, and Min Xu. "Experimental study of flash boiling spray vaporization through quantitative vapor concentration and liquid temperature measurements." Experiments in fluids 55.8 (2014): 1804

Kamoun, H., Lamanna, G., Ruberto, S., Komenda, A., Weigand, B., & Steelant, J. (2014). Experimental investigations of fully flashing jets.

TIME AVERAGED TEMPERATURE AT Z= 1MM (HOLE1-HOLE5)

TIME AVERAGED TEMPERATURE AT Z= 2MM (HOLE1-HOLE5)

TIME AVERAGED TEMPERATURE AT Z= 1MM (HOLE2-HOLE6)

TIME AVERAGED TEMPERATURE AT Z= 2MM (HOLE2-HOLE6)

TIME AVERAGED TEMPERATURE AT Z= 1MM (HOLE3-HOLE7)

TIME AVERAGED TEMPERATURE AT Z= 2MM (HOLE3-HOLE7)

TIME AVERAGED TEMPERATURE AT Z= 1MM (HOLE4-HOLE8)

TIME AVERAGED TEMPERATURE AT Z= 2MM (HOLE4-HOLE8)

TIME AVERAGED DENSITY AT Z= 2MM (SPRAY G2)

TIME AVERAGED DENSITY AT Z= 2MM (HOLE4-HOLE8)

DENSITY (NOZZLE & CB EXIT)-CMT CONVERGE

DENSITY (NOZZLE & CB EXIT)-UMASS HRMFOAM

Spray G2

VELOCITY (NOZZLE & CB EXIT)-CMT CONVERGE

VELOCITY (NOZZLE & CB EXIT)-UMASS HRMFOAM

Spray G2

LIQUID VOLUME FRACTION (NOZZLE & CB EXIT)-CMT CONVERGE

LIQUID VOLUME FRACTION (NOZZLE & CB EXIT)-UMASS HRMFOAM

VAPOR VOLUME FRACTION (NOZZLE & CB EXIT)-UMASS HRMFOAM

DENSITY (MID PLANE CLIP)-CMT CONVERGE

Spray G

DENSITY (MID PLANE CLIP)-UMASS HRMFOAM

Spray G

VELOCITY (MID PLANE CLIP)-CMT CONVERGE

Spray G

VELOCITY (MID PLANE CLIP)-UMASS HRMFOAM

Spray G

LIQUID MASS FRACTION (MID PLANE CLIP)-CMT CONVERGE

Spray G

LIQUID MASS FRACTION (MID PLANE CLIP)-UMASS HRMFOAM

Spray G

LIQUID VOLUME FRACTION (MID PLANE CLIP)-CMT CONVERGE

Spray G

LIQUID VOLUME FRACTION (MID PLANE CLIP)-UMASS HRMFOAM

Spray G

VAPOR VOLUME FRACTION (MID PLANE CLIP)-UMASS HRMFOAM

Spray G

LIQUID VOLUME FRACTION (SPRAY G)-CHALMERS

Mid plane view

CB and Nozzle exit cut plane view

NEXT STEPS

- Get a Generation 3 file from ANL
 - "Stanford Bunnied": a verb
 - Separated into separate parts

- Start paying a lot more attention to hole numbering convention
- G3 and other conditions

EXPERIMENT AND MODELING NEEDS

- Broken:
 - Eulerian liquid/gas exchange rates are broken--At the maximum bound of instantaneous transfer
 - Only ANL is contributing experimental data
 - HRM in different codes gives VERY different results
- Requisite modeling work:
 - Finite-rate momentum and energy exchange
- Requisite experimental work:
 - Geometry that is CFD-ready
 - Temperature measurements
 - Individual hole mass flow rates
 - Momentum rate measurements

