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• More and more simulations consider both nozzle internal flow 

and near-field flow and how this affects spray characteristics

• This allows proper boundary conditions

• Transient effects can be tackled

• Focusing on either nozzle internal flow or near-field flow 

only seems questionable (possibly, same simulation for two 

topics)

• Three different nozzles available: Spray A, C, D

• With known boundary conditions:

real geometries, needle tip motion, wall temperatures

spray D

spray C

spray A

NOTES
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OBJECTIVES

• Focus on the near-nozzle region: within first ~10 mm

• Spray A

• Spray C / D

• Capture spray physics under nominal ECN conditions and under cold conditions

• Study and comparison of different modeling approaches, from RANS to LES, to DNS, and Lagrangian-

Eulerian, Eulerian-Eulerian

• Encourage high-fidelity simulations of fuel sprays to understand the physics of the primary atomization

• Provide a robust database for model validation and for physics understanding 

• mass distribution 

• phase interfacial area

• droplet sizing
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CONTRIBUTORS – EXPERIMENTS

Group Spray Data & Conditions

A C D

ANL

(US)

Brandon Sforzo

Katarzyna Matusik

Christopher Powell

Alan Kastengren

















Radiography - spray A  #675 ref. case + parametric variations

- spray C #37 ref. case

- spray D #133 ref. case + parametric variations

- spray D #134 ref. case

Tomography  - spray C #37 ref. case

- spray D #134 ref. case

USAXS - spray A #675 ref. case + parametric variations

- spray C #37 ref. case + parametric variations

- spray D #133 ref. case

- spray D #134 ref. case 

SANDIA

(US)

Shane Daly, Oregon State

Scott Skeen, Emre Cenker, 

Lyle Pickett, Sandia National 

Laboratories

Cyril Crua, Univ. Brighton

Fredrik Westlye, Tech Univ. 

Denmark

Julien Manin, Artium

  Optical long-distance microscopy

Measurement of liquid envelope for Spray C and 

Spray D with different fuel and ambient temperatures
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CONTRIBUTORS – CFD MODELERS

Institution/Group Spray Conditions: Steady state/Transient/…

A C D

Aachen RWTH

(Germany)

Mathis Bode

Marco Davidovic

Heinz Pitsch

  Reference

Transient

CMT-UniOvi-CIEMAT

(Spain)

José M. Pastor

Adrian Pandal Blanco

Bertrand Naud

 Reference + parametric variations

Transient

CORIA

(France)

Aqeel Ahmed

François-Xavier Demoulin

 Reference + parametric variations

Transient

Perugia

(Italy)

Michele Battistoni   Reference

Steady

SANDIA

(US)

Marco Arienti

Joonsik Hwang

 Reference

Steady

SANDIA-Artium

(US)

Julien Manin  Reference

Steady

UMass

(US)

Peetak Mitra

Declan Gwynne

Eli Baldwin

David Schmidt

  Reference

Steady

Transient SOI/EOI & multiple-injection
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MODEL DESCRIPTION

Institution/Group approach CFD code Compressibility and EOS Turbulence model

Aachen RWTH, 
Mathis Bode

Marco Davidovic

Heinz Pitsch

In-nozzle: LES/

Atomiz.:   DNS

CIAO 

(in-house)

Compressible code with HEM with 

(SG/PR EOS)

Low-Mach

LES - Dynamic 

Smagorinsky, 
with Lagrangian averaging 

backward in time

CMT-UniOvi-CIEMAT,
José M.  Pastor

Adrian Pandal Blanco

Bertrand Naud

Diffuse interface (mixture) + Σ-Y

Eulerian single fluid

OpenFOAM Barotropic liquid

Ideal gas
LES
eddy viscosity based 

SIGMA model (Nicoud

et al. POF, 2011)

CORIA,
Aqeel Ahmed

François-Xavier Demoulin

Diffuse interface (mixture) 

+ Σ-Y and ELSA model

OpenFOAM Incompressible LES
WALE

Perugia,
Michele Battistoni

1) Diffuse interface (mixture)

2) Sharp interface VOF

CONVERGE 1) barotropic liquid + ideal gas

2) incompressible

LES 
Dynamic Structure

SANDIA,
Marco Arienti, Hwang

Diffuse interface (mixture) CONVERGE barotropic liquid + RK gas RANS
RNG k-e

SANDIA-Artium,
Julien Manin

VOF Gerris Incompressible DNS
no model

UMass,
Peetak Mitra, Declan Gwynne, 

Eli Baldwin, David Schmidt

Diffuse interface (mixture) + Σ-Y 

Homogeneous Relaxation Model

Eulerian single fluid

HRMFoam Compressible

Refprop (NIST database)
RANS

k-w    
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MODEL DESCRIPTION

Institution/Group min-max mesh resolution 

(within the 0-10 mm range)

Needle motion Internal nozzle included Dimensionality and 

domain extension

Aachen RWTH, 
Mathis Bode

Marco Davidovic

Heinz Pitsch

1 μm - 60 μm Moving needle 1-way 

coupling interface at 

nozzle exit

3D

CMT-UniOvi-CIEMAT,
José M.  Pastor

Adrian Pandal Blanco

Bertrand Naud

3 μm – 90 μm  Fixed – high lift Not included

(educated ROI + synthetic 

turbulent fluctuations)

3D

(chamber L = 20 mm)

CORIA,
Aqeel Ahmed

François-Xavier Demoulin

1 μm – 15 μm (axisymmetric)

2 μm – 80 μm (STL)

Fixed – high lift Yes 3D 

(chamber L = 10 mm)

Perugia,
Michele Battistoni

2.5 μm – 40 μm  
(with AMR)

Fixed – high lift Yes 3D

(chamber L = 15 mm)

SANDIA,
Marco Arienti, Hwang

7.81μm - 250μm 
(with embedded refinements and AMR)

Fixed – high lift Yes 3D

(chamber L = 24 mm)

SANDIA-Artium,
Julien Manin

0.9 μm (0 to 20 diam.)

1.8 μm (0 to 40 diam.)

3.6 μm (0 to 80 diam.)

Fixed – high lift No internal flow 

(fixed velocity profile)

3D 

(20, 40 and 80 diameters 

long domains)

UMass,
Peetak Mitra, Declan 

Gwynne, Eli Baldwin, David 

Schmidt

1.1 μm – 25 μm

(Pacman mesh motion Library)

C) Fixed – high lift

D) Moving needle

Yes 3D (chamber L= 3 mm)
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MODEL DESCRIPTION

Institution/Group nozzle surface Cell type Cell count Spatial discretization Temporal discretization

Aachen RWTH, 
Mathis Bode

Marco Davidovic

Heinz Pitsch

A #675

C #37

D #134

hex

(structured 

Cartesian)

800 M Hybrid (2nd/4th CD & WENO 

3rd/5th)

2nd order Runge-Kutta

CMT-UniOvi-CIEMAT,
José M.  Pastor

Adrian Pandal Blanco

Bertrand Naud

A #675 hex 7 M 2nd order Gamma NVD 2nd order backward

CORIA,
Aqeel Ahmed

François-Xavier Demoulin

A #675 – axisymmetric 

A #675 – high resolution STL

hex 

(dominant)

32 M

5 M

2nd order linear

2nd order linear

2nd order backward for U

1st order Euler for volume fraction

(MULES) with 3 sub-cyles

Perugia,
Michele Battistoni

C #37 – high resolution STL

D #134 – high resolution STL
hex 50 M 1) 2nd order CD for all (with flux 

limiter), except for turbulence, 

2) VOF-LES 1st order 

1st order Euler

Dt ~ 1.0 ns

SANDIA,
Marco Arienti, Hwang

C #37 – high resolution STL hex 1 M 1st order upwind, except for 

turbulence.

Rhie-Chow and strictly 

conservative

1st order Euler

SANDIA-Artium,
Julien Manin

A #675 hex

(Octree 

with ARM)

max 540 M - -

UMass,
Peetak Mitra, Declan 

Gwynne, Eli Baldwin, David 

Schmidt

C #37 – Wireframe (axisym.)

D #134 – high resolution STL
Polydehra 0.7 M 2nd order 1St order Euler
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CMT-UniOvi-CIEMAT  
(OpenFOAM – LES)

9

SANDIA-Artium (Gerris – DNS)

CORIA (OpenFOAM – LES)

SPRAY A



Aachen (CIAO – DNS)

10

SANDIA (CONVERGE – RANS)

SPRAY C/D

sharp

diffuse

Perugia (CONVERGE – LES)

Umass
(HRMFoam – RANS)



SPRAY A – PROJECTED MASS & TRANSV. INTEGRATED MASS (EXP VS. SIM)

CMT-UniOvi-CIEMAT
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LES calculations:

Single realization + time-averaging 
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SPRAY A – PROJECTED MASS & TRANSV. INTEGRATED MASS (EXP VS. SIM)
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CORIA

Improvements up to 5-6 mm, with LES: 

…..lack of resolution in the far field? (under-resolved LES?)
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SPRAY A – PROJECTED FUEL MASS PROFILES

13

CORIA

Improvements up to 5-6 mm, with LES: 

…..lack of resolution in the far field? (under-resolved LES?)

CMT-UniOvi-CIEMAT



SPRAY A – DROPLET SIZE
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drop statistics (from DNS in the 
very early stage – Gerris code)

SANDIA-Artium

• pdf of diameters are still not 
available from experiments in 
the dense core for comparison
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SPRAY D – PROJECTED MASS & TRANSV. INTEGRATED MASS (EXP)
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D #134 90deg

D #134 0deg D #133
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SPRAY D – PROJECTED MASS & TRANSV. INTEGRATED MASS (EXP VS. SIM)

D #134 0deg

Perugia (diffuse)

Perugia (sharp) – not time averaged
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SPRAY D – PROJECTED FUEL MASS PROFILES (STEADY)

• Spray D #134 jet deviates substantially from the axis

• Models tend to capture the distribution, if a transv. 

offset is applied
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SPRAY D – PROJECTED FUEL MASS PROFILES (STEADY)

• Re-centering is needed for better comparison, 

maybe about the FWHM

• Models tend to capture the distribution and details of 

asymmetries

90 deg view
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SPRAY C – PROJECTED FUEL MASS & 
TRANSVERSE INTEGRATED MASS (EXP)
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SPRAY C – PROJECTED FUEL MASS & 
TRANSVERSE INTEGRATED MASS (EXP VS. SIM)
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SPRAY C – PROJECTED FUEL MASS PROFILES (STEADY)
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SPRAY C – PROJECTED FUEL MASS PROFILES (STEADY)
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90 deg view
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SPRAY D_134 vs. C_37: FUEL DENSITY FIELD at x = 0.1 mm

D_134 C_37

ANL reconstructed 

fuel density field 

(μg/mm3)

Time averaged in the 

steady state part

Sforzo et. al. ICLASS 201823



SPRAY C_37: FUEL DENSITY FIELD at x = 0.1, 2, 5 mm

video
C_37

0.1 mm 2 mm 5 mm

ANL reconstructed 

fuel density field 

(μg/mm3)

Time averaged in the 

steady state part

Sforzo et. al. ICLASS 201824



SPRAY C_37: FUEL DENSITY FIELD at x = 0.1, 2, 5 mm

0.1 mm

2 mm

5 mm

ANL SANDIAPerugia UMass25



SPRAY C/D – INTERFACIAL AREA
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x

y

x

y

Axial sweep

Transv. sweep

Total area of phase interface, 𝐴, and the total volume, 𝑉
with “USAXS-like” method:   𝑉/𝑉𝑏𝑜𝑥 &  𝐴/𝑉𝑏𝑜𝑥
Line-of-sight box, moving along X and Y, to collect info on 

each structure, including core 

On each box, collection of: 

- liquid volume V

- interface area A

Bin size in the USAXS 

experiments: 50 µm × 500 µm

Experiments: USAXS

(Ultra Small Angle Xray Scattering)

x z

Battistoni, Magnotti, et al., SAE 2018

In order to compare “apple-to-apple”:

Simulation postprocessing that mimicks

USAXS method

Matusik et. al. ICLASS 2018

Kastengren et al., IJMF 2017

𝑆𝑀𝐷 = 6
𝑉/𝑉𝑏𝑜𝑥
𝐴/𝑉𝑏𝑜𝑥



SPRAY D – PHASE INTERFACE AREA
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ANL (USAXS data) Perugia
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• The double peak in the projected area distribution is due to the intact core. 

• It is therefore possible to identify the liquid core length. In this case about 5-6 mm



SPRAY D – SAUTER MEAN DIAMETER
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• Model captures the SMD trend

• Actual droplet size (detached 

structures) is insensitive to the 

axial distance

• Room for improvement: more 

resolution still required to be 

fully predictive at diesel spray 

conditions

• USAXS data include the liquid 

core: USAXS provide an 

apparent SMD in the centerline
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Battistoni, Magnotti, et al., SAE 2018

Matusik et. al. ICLASS 2018



SPRAY C VS. D – SAUTER MEAN DIAMETER
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x = 10 mm Spray centerline (y=0 mm)

due to 

inclusion 

of core

• C has finer structures in the periphery 

• C is much more spread along y-dir

Perugia (C #37) (sharp) – not time averaged

0 deg 

(view 1)



Perugia (sharp) – not time averaged

SPRAY C – PROJECTED AREA, MASS, AND SAUTER MEAN DIAMETER
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• Area is underestimated, so SMD overestimated, because of grid resolution limit

• The spreading of spray C is larger in y-dir, in accordance with x-ray experiments 

0 deg view



SPRAY C – INTERFACIAL AREA PARAMETRIC VARIATIONS
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500 -1 bar1500 -1 bar1500 - 20 bar
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SPRAY C, 900 K AMBIENT, 440 K FUEL T

▪ View 2 much more narrow for Spray C

▪ Spray D the same

▪ Due to cavitation that causes a large disturbance that creates 

growth in the View 1 direction

0 deg 

(view 1)

90 deg 

(view 2)

SANDIA
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SPRAY C, 900 K AMBIENT, 363 K FUEL T

Center plume and plot data at 2 and 8 mm

Recommendation for CFD comparison

estimated assuming about 2 mm droplet

𝜏
𝜋 Τ𝑑3 6

𝐶𝑒𝑥𝑡
= න

−𝑦∞

𝑦∞

𝐿𝑉𝐹 ∙ 𝑑𝑦 = 𝟎. 𝟐 ∙ 10−3
𝑚𝑚3𝑙𝑖𝑞𝑢𝑖𝑑

𝑚𝑚2

𝜏 = 0.37

Best estimate for a liquid length threshold, 

preserving past assumptions:

SANDIA

• Need to test Eulerian models with this criteria

• Assess the assumptions, like 2 mm? at different p,T
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SOME FUTURE DIRECTIONS

▪ Need to validate liquid dispersion and atomization (like S-Y, or other models) on C/D, rather 

than on A. There is more knowledge now and more spatially varying dataset available on C/D.

▪ Need to check better the phase interaction (drag,…) in Eulerian formulation, with reference to 

turbulence models, and atomization (bi-directional effects should be included)

▪ Focus on the core and detached structures, being aware of the value interpretation.

▪ Test projected liquid volume (PLV) criterion to detect spray boundary (angle or penetration): 

compare models vs. optical measurements and mass-based measurements.

▪ Temperature of the fuel, temperature of the chamber

▪ Since most of the model development (or tuning) is based on mass-based measurements, it 

would be very important to quantify uncertainties (error bars) or define specific known test 

cases.
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