TOPIC 2 PRIMARY ATOMIZATION (NEAR-NOZZLE MIXING)

Presenter: Michele Battistoni, University of Perugia

Valencia, September 10th, 2018

Contributors (list of groups):

Experiments:

- Shane Daly, Oregon State, Scott Skeen, Emre Cenker, Lyle Pickett, Sandia National Laboratories Cyril Crua, Univ. Brighton - Fredrik Westlye, Tech Univ. Denmark - Julien Manin, Artium
- Brandon Sforzo, Alan Kastengren, Katie Matusik, Chris Powell, Argonne National Laboratory, Simulations:
- Marco Arienti, Joonsik Hwang, Sandia National Laboratories
- Michele Battistoni, University of Perugia
- Mathis Bode, Aachen University
- José M. Pastor, CMT Adrian Pandal, University of Oviedo, Bertrand Naud, CIEMAT
- Aqeel Ahmed, François-Xavier Demoulin, Coria
- Julien Manin, SANDIA, Artium
- Peetak Mitra, David Schmidt, University of Massachusetts

NOTES

- More and more simulations consider both nozzle internal flow and near-field flow and how this affects spray characteristics
 - This allows proper boundary conditions
 - Transient effects can be tackled
 - Focusing on either nozzle internal flow or near-field flow only seems questionable (possibly, same simulation for two topics)
- Three different nozzles available: Spray A, C, D
 - With known boundary conditions:

real geometries, needle tip motion, wall temperatures

OBJECTIVES

- Focus on the near-nozzle region: within first ~10 mm
 - Spray A
 - Spray C / D
- Capture spray physics under nominal ECN conditions and under cold conditions
- Study and comparison of different modeling approaches, from RANS to LES, to DNS, and Lagrangian-Eulerian, Eulerian-Eulerian
- Encourage high-fidelity simulations of fuel sprays to understand the physics of the primary atomization
- Provide a robust database for model validation and for physics understanding
 - mass distribution
 - phase interfacial area
 - droplet sizing

CONTRIBUTORS – EXPERIMENTS

Group		Spray		Data & Conditions			
		А	С	D			
ANL (US)	Brandon Sforzo Katarzyna Matusik Christopher Powell Alan Kastengren	~	v v v	> > >	Radiography Tomography USAXS	- spray A #675 - spray C #37 - spray D #133 - spray D #134 - spray C #37 - spray D #134 - spray A #675 - spray C #37 - spray D #133	ref. case + parametric variations ref. case ref. case + parametric variations ref. case ref. case ref. case ref. case + parametric variations ref. case + parametric variations ref. case
SANDIA (US)	Shane Daly, Oregon State Scott Skeen, Emre Cenker, Lyle Pickett, Sandia National Laboratories Cyril Crua, Univ. Brighton Fredrik Westlye, Tech Univ. Denmark Julien Manin, Artium		~	~	Optical long-distance microscopy Measurement of liquid envelope for Spray C and Spray D with different fuel and ambient temperature		roscopy velope for Spray C and I and ambient temperatures

CONTRIBUTORS – CFD MODELERS

Institution/Group		Spray			Conditions: Steady state/Transient/…	
		А	С	D		
Aachen RWTH (Germany)	Mathis Bode Marco Davidovic Heinz Pitsch		~	~	Reference Transient	
CMT-UniOvi-CIEMAT (Spain)	José M. Pastor Adrian Pandal Blanco Bertrand Naud	~			Reference + parametric variations Transient	
CORIA (France)	Aqeel Ahmed François-Xavier Demoulin	~			Reference + parametric variations Transient	
Perugia (Italy)	Michele Battistoni		~	~	Reference Steady	
SANDIA (US)	Marco Arienti Joonsik Hwang		~		Reference Steady	
SANDIA-Artium (US)	Julien Manin	~			Reference Steady	
UMass (US)	Peetak Mitra Declan Gwynne Eli Baldwin David Schmidt		~	~	Reference Steady Transient SOI/EOI & multiple-injection	

MODEL DESCRIPTION

Institution/Group	approach	CFD code	Compressibility and EOS	Turbulence model
Aachen RWTH, Mathis Bode Marco Davidovic Heinz Pitsch	In-nozzle: LES/ Atomiz.: DNS	CIAO (in-house)	Compressible code with HEM with (SG/PR EOS) Low-Mach	LES - Dynamic Smagorinsky, with Lagrangian averaging backward in time
CMT-UniOvi-CIEMAT , José M. Pastor Adrian Pandal Blanco Bertrand Naud	Diffuse interface (mixture) + Σ-Υ Eulerian single fluid	OpenFOAM	Barotropic liquid Ideal gas	LES eddy viscosity based SIGMA model (Nicoud et al. POF, 2011)
CORIA, Aqeel Ahmed François-Xavier Demoulin	Diffuse interface (mixture) + Σ-Y and ELSA model	OpenFOAM	Incompressible	LES WALE
Perugia , Michele Battistoni	 Diffuse interface (mixture) Sharp interface VOF 	CONVERGE	 barotropic liquid + ideal gas incompressible 	LES Dynamic Structure
SANDIA , Marco Arienti, Hwang	Diffuse interface (mixture)	CONVERGE	barotropic liquid + RK gas	RANS RNG k-e
SANDIA-Artium, Julien Manin	VOF	Gerris	Incompressible	DNS no model
UMass, Peetak Mitra, Declan Gwynne, Eli Baldwin, David Schmidt	Diffuse interface (mixture) + Σ-Υ Homogeneous Relaxation Model Eulerian single fluid	HRMFoam	Compressible Refprop (NIST database)	RANS κ-ω

MODEL DESCRIPTION

Institution/Group	min-max mesh resolution Needle motion (within the 0-10 mm range)		Internal nozzle included	Dimensionality and domain extension
Aachen RWTH, Mathis Bode Marco Davidovic Heinz Pitsch	1 μm - 60 μm	Moving needle	1-way coupling interface at nozzle exit	3D
CMT-UniOvi-CIEMAT , José M. Pastor Adrian Pandal Blanco Bertrand Naud	3 μm – 90 μm	Fixed – high lift	Not included (educated ROI + synthetic turbulent fluctuations)	3D (chamber L = 20 mm)
CORIA, Aqeel Ahmed François-Xavier Demoulin	1 μm – 15 μm (axisymmetric) 2 μm – 80 μm (STL)	Fixed – high lift	Yes	3D (chamber L = 10 mm)
Perugia , Michele Battistoni	2.5 μm – 40 μm (with AMR)	Fixed – high lift	Yes	3D (chamber L = 15 mm)
SANDIA , Marco Arienti, Hwang	7.81µm - 250µm (with embedded refinements and AMR)	Fixed – high lift	Yes	3D (chamber L = 24 mm)
SANDIA-Artium , Julien Manin	0.9 μm (0 to 20 diam.) 1.8 μm (0 to 40 diam.) 3.6 μm (0 to 80 diam.)	Fixed – high lift	No internal flow (fixed velocity profile)	3D (20, 40 and 80 diameters long domains)
UMass, Peetak Mitra, Declan Gwynne, Eli Baldwin, David Schmidt	1.1 μm – 25 μm (Pacman mesh motion Library)	C) Fixed – high lift D) Moving needle	Yes	3D (chamber L= 3 mm)

ENGINE COMBUSTION NETWORK

MODEL DESCRIPTION

Institution/Group	nozzle surface	Cell type	Cell count	Spatial discretization	Temporal discretization
Aachen RWTH, Mathis Bode Marco Davidovic Heinz Pitsch	A #675 C #37 D #134	hex (structured Cartesian)	800 M	Hybrid (2 nd /4 th CD & WENO 3 rd /5 th)	2 nd order Runge-Kutta
CMT-UniOvi-CIEMAT , José M. Pastor Adrian Pandal Blanco Bertrand Naud	A #675	hex	7 M	2 nd order Gamma NVD	2 nd order backward
CORIA, Aqeel Ahmed François-Xavier Demoulin	A #675 – axisymmetric A #675 – high resolution STL	hex (dominant)	32 M 5 M	2 nd order linear 2 nd order linear	2 nd order backward for U 1 st order Euler for volume fraction (MULES) with 3 sub-cyles
Perugia , Michele Battistoni	C #37 – high resolution STL D #134 – high resolution STL	hex	50 M	 2nd order CD for all (with flux limiter), except for turbulence, VOF-LES 1st order 	1 st order Euler Dt ~ 1.0 ns
SANDIA, Marco Arienti, Hwang	C #37 – high resolution STL	hex	1 M	1 st order upwind, except for turbulence. Rhie-Chow and strictly conservative	1 st order Euler
SANDIA-Artium , Julien Manin	A #675	hex (Octree with ARM)	max 540 M	-	-
UMass, Peetak Mitra, Declan Gwynne, Eli Baldwin, David Schmidt	C #37 – Wireframe (axisym.) D #134 – high resolution STL	Polydehra	0.7 M	2 nd order	1 St order Euler

8

SPRAY A

CMT-UniOvi-CIEMAT (OpenFOAM – LES)

SANDIA-Artium (Gerris – DNS)

CORIA (OpenFOAM – LES)

SPRAY C/D

SANDIA (CONVERGE – RANS)

SPRAY A – PROJECTED MASS & TRANSV. INTEGRATED MASS (EXP VS. SIM)

SPRAY A – PROJECTED MASS & TRANSV. INTEGRATED MASS (EXP VS. SIM)

Improvements up to 5-6 mm, with LES:lack of resolution in the far field? (under-resolved LES?)

SPRAY A – PROJECTED FUEL MASS PROFILES

CMT-UniOvi-CIEMAT

CORIA

Improvements up to 5-6 mm, with LES:

.....lack of resolution in the far field? (under-resolved LES?)

SPRAY A – DROPLET SIZE

drop statistics (from DNS in the very early stage – Gerris code)

 pdf of diameters are still not available from experiments in the dense core for comparison

20

SMD from DNS is still over-estimated by a factor of about 4X (resolution used was 1um)

SPRAY D – PROJECTED MASS & TRANSV. INTEGRATED MASS (EXP)

SPRAY D – PROJECTED MASS & TRANSV. INTEGRATED MASS (EXP VS. SIM)

axial distance [mm]

0 deg view

SPRAY D – PROJECTED FUEL MASS PROFILES (STEADY)

- Spray D #134 jet deviates substantially from the axis
- Models tend to capture the distribution, if a transv. offset is applied

90 deg view

SPRAY D – PROJECTED FUEL MASS PROFILES (STEADY)

- Re-centering is needed for better comparison, maybe about the FWHM
- Models tend to capture the distribution and details of asymmetries

SPRAY C – PROJECTED FUEL MASS & TRANSVERSE INTEGRATED MASS (EXP)

SPRAY C – PROJECTED FUEL MASS & TRANSVERSE INTEGRATED MASS (EXP VS. SIM)

20

0 deg view

SPRAY C – PROJECTED FUEL MASS PROFILES (STEADY)

90 deg view

SPRAY C – PROJECTED FUEL MASS PROFILES (STEADY)

Sforzo et. al. ICLASS 2018

22

steady state part

754.00

628.33

502.67

377.00

251.33

125.67

0.00

hg/mm²

 $(\mu g/mm^3)$

ANL reconstructed

Sforzo et. al. ICLASS 2018

23

Sforzo et. al. ICLASS 2018

0.1 mm

SPRAY C_37: FUEL DENSITY FIELD at x = 0.1, 2, 5 mm

ANL reconstructed fuel density field $(\mu g/mm^3)$

Time averaged in the steady state part

5 mm

2 mm

SPRAY C_37: FUEL DENSITY FIELD at

0.1 mm

5 mm

Perugia

SANDIA

0.2

x = 0.1, 2, 5 mm

0.1

0 y [mm]

-0.1

-0.2

0.2

0.1

0

-0.1

0.2

0.2

SPRAY C/D – INTERFACIAL AREA

Experiments: USAXS (Ultra Small Angle Xray Scattering)

Bin size in the USAXS experiments: 50 μm × 500 μm

Matusik et. al. ICLASS 2018 Kastengren et al., IJMF 2017 In order to compare "apple-to-apple": Simulation postprocessing that <u>mimicks</u> USAXS method

Total area of phase interface, *A*, and the total volume, *V* with "USAXS-like" method: $V/V_{box} \& A/V_{box}$ Line-of-sight box, moving along X and Y, to collect info on each structure, <u>including core</u>

On each box, collection of:

- liquid volume V

0.8

- interface area A

$$SMD = 6 \frac{V/V_{box}}{A/V_{box}}$$

Battistoni, Magnotti, et al., SAE 2018

SPRAY D – PHASE INTERFACE AREA

- The double peak in the projected area distribution is due to the intact core.
- It is therefore possible to identify the liquid core length. In this case about 5-6 mm

SPRAY D – SAUTER MEAN DIAMETER

.

•

•

•

apparent SMD in the centerline

SPRAY C VS. D – SAUTER MEAN DIAMETER

- C has finer structures in the periphery
- C is much more spread along y-dir

Spray centerline (y=0 mm)

SPRAY C – PROJECTED AREA, MASS, AND SAUTER MEAN DIAMETER

- Area is underestimated, so SMD overestimated, because of grid resolution limit
- The spreading of spray C is larger in y-dir, in accordance with x-ray experiments

SPRAY C – INTERFACIAL AREA PARAMETRIC VARIATIONS

0 deg (view 1)

1500 - 20 bar

1500 -1 bar

500 -1 bar

SPRAY C, 900 K AMBIENT, 440 K FUEL T

SANDIA

- View 2 much more narrow for Spray C
- Spray D the same
- Due to cavitation that causes a large disturbance that creates growth in the View 1 direction

SPRAY C, 900 K AMBIENT, 363 K FUEL T

Center plume and plot data at 2 and 8 mm

Recommendation for CFD comparison

Best estimate for a liquid length threshold, preserving past assumptions:

 $\tau = 0.37$ estimated assuming about 2 μ m droplet

$$\tau \frac{\pi \, d^3/6}{C_{ext}} = \int_{-y_{\infty}}^{y_{\infty}} LVF \cdot dy = \mathbf{0} \cdot \mathbf{2} \cdot 10^{-3} \; \frac{mm^3 liquid}{mm^2}$$

- Need to test Eulerian models with this criteria
- Assess the assumptions, like 2 μm? at different p,T

SANDIA

SOME FUTURE DIRECTIONS

- Need to validate liquid dispersion and atomization (like Σ-Y, or other models) on C/D, rather than on A. There is more knowledge now and more spatially varying dataset available on C/D.
- Need to check better the phase interaction (drag,...) in Eulerian formulation, with reference to turbulence models, and atomization (bi-directional effects should be included)
- Focus on the core and detached structures, being aware of the value interpretation.
- Test projected liquid volume (PLV) criterion to detect spray boundary (angle or penetration): compare models vs. optical measurements and mass-based measurements.
- Temperature of the fuel, temperature of the chamber
- Since most of the model development (or tuning) is based on mass-based measurements, it would be very important to quantify uncertainties (error bars) or define specific known test cases.

