SEPTEMBER 10, 2018

ECN6: TOPICS 1 & 2 DIESEL INTERNAL AND NEAR NOZZLE FLOW

MATHIS BODE RWTH Aachen University **BRANDON SFORZO** Argonne National Laboratory MICHELE BATTISTONI University of Perugia

ECN 6 Workshop, Valencia, Spain

2) INTERNAL NOZZLE EFFECTS Contributors

- Sandia: Julien Manin, Lyle Picket
- Perugia: Michele Battistoni
- UMass: Peetak Mitra, Declan Gwynne, Eli Baldwin, David Schmidt
- Sandia: Joonsik Hwang, Marco Arienti
- RWTH: Mathis Bode, Marco Davidovic, Heinz Pitsch

MODEL DESCRIPTION

Institution/Group	Approach	CFD code	Compressibility and EOS	Turbulence model
RWTH Aachen Bode, Davidovic, Pitsch	LES/DNS	CIAO	Compressible code with HEM with (SG/PR EOS)	Dynamic Smagorinsky (Lag. Averaging)
UMass Mitra, Gwynne, Baldwin, Schmidt	RANS Homogenous Relaxation Model	HRMFoam	Compressible Refprop (NIST database)	к-ш
Perugia Battistoni	Diffuse interface (mixture)	CONVERGE	barotropic liquid + RK gas	LES Dynamic Structure
Sandia Hwang, Arienti	RANS	CONVERGE	Standard compressible formulation based on extended barotropic	RNG k-e

MODEL DESCRIPTION

Institution/Group	Nozzle surface	min-max mesh resolution	Needle motion	Dimensionality
RWTH Aachen Bode, Davidovic, Pitsch	C #37 – high resolution STL D #134 – high resolution STL	1.0 μm – 10 μm	Measured	3D
UMass Mitra, Gwynne, Baldwin, Schmidt	Wireframe	1.1 μm – 25 μm (Pacman mesh motion Library)	Fixed	3D
Perugia Battistoni	C #37 – high resolution STL D #134 – high resolution STL	2.5 μm – 40 μm (with AMR)	Fixed – high lift	3D
Sandia Hwang, Arienti	C #37 – high resolution STL	7.81µm - 250µm (With embedded mesh refinement and AMR)	Fixed – high lift	3D

MODEL DESCRIPTION

Institution/Group	Cell type	Cell count	Spatial discretization	Temporal discretization
RWTH Aachen Bode, Davidovic, Pitsch	Cartesian structured	80M	Hybrid 2 nd order	2 nd order RK
UMass Mitra, Gwynne, Baldwin, Schmidt	Polyhedra	2.1M	2 nd order	1 St order Euler
Perugia Battistoni	hex	50M	1) 2 nd order CD for all (with flux limiter), except for turbulence,	1 st order Euler Dt ~ 1.0 ns
Sandia Hwang, Arienti	Brick	1M	First-order upwind for momentum with blending factor 1.0. Rhie-Chow and strictly conservative.	Transient solver

MESHES

yC12H26: 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

RECALL: ECN5 – SPRAY D (BATTISTONI)

Effects of geometry on Spray D studied

SPRAY D - VELOCITIES

RWTH

RECALL: ECN4 – SPRAY C (BATTISTONI)

- Wireframe symmetric geometry
- Symmetric vapor volume fraction

SPRAY C – SIMULATION RESULTS

EVOLUTION OF VAPOR

Sandia

LOCATION OF VAPOR FRACTION

Perugia

GAS INSIDE THE NOZZLE

ACRYLIC NOZZLE

- Custom chamber for optical flow characterization in transparent nozzles
 - Continuous flow
 - Vacuum and high-pressure (6 MPa) capabilities
- Real-size transparent nozzles made of cast acrylic
 - Mechanical properties superior to quartz
 - Refractive index close to fuel (n-dodecane)
 - Geometrical match for ECN Spray D (190 mm)
 - Cylindrical nozzle measures 175 mm

EXPERIMENTAL SETUP

- Synchronized and spectrally-separated stereomicroscopy setup allowing stereo/3-D visualization of needle motion and flow processes
- Primary system (Phantom):
 - 8X magnification (3.5 mm/pix)
 - 120 380kHz acquisition rates
- Secondary system (Photron):
 - 3X magnification (7 mm/pix)
 - 270kHz acquisition rate
- Illumination via Sandia-developed ultrafast high-power LED pulsers
 - Custom single and multi-die LED emitters
 - 30 ns pulse duration to freeze flow motions

EFFECT OF INTERNAL GAS - EXPERIMENTS

Nozzle full of gas 25 MPa – 1 atm.

Nozzle full of liquid 50 MPa – 1 atm.

EFFEFCT OF INTERNAL GAS - SIMULATIONS

- Gas in sac compresses as the sac pressurizes
- Injection is slightly delayed by the gas in the sac (7.1 vs. 5.6 mus)
- The injection of gas bubbles results in spray breakup

EFFECTS OF INTERNATL GAS - SIMULATIONS

- Cases with Bubble tend to start with low mass flows because the bubble takes time to eject.
- However their residual fuel mass during dwell is higher thus causing potential emission problems.

EFFEFCT OF INTERNAL GAS - SIMULATIONS

Changes in the early surface formation of ~10%

SUMMARY

- Many effects are captured correctly by simulations
- Basic experimental data such as turbulence information would be nice
- Shot to shot variations of internal flow should be considered
- How predictive is predictive enough should be discussed

