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Topic Motivation and Objectives

• Motivation

✓ Understand the fuel effects on spray at CI conditions as an additional dimension for model 

development and validation

• Objective 

✓ Summarize and understand the available experimental and computational fuel effect studies

✓ Relevant studies on spray fuel effect

✓ Define a “Fuel” of interest for the ECN community

• Assumption:

✓ Variations of combustion chambers, boundary conditions, optical diagnostic techniques, 

definitions were not considered
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Experimental Investigation of Spray Fuel Effects

3
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Literature Referred
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Nozzle

Spray A

Single-hole, 90 µm,

K 1.5 / 0.86

Ambient temperature 700 – 1200 K 

Ambient density 15.2, 22.8, 45.6 kg/m3

Ambient oxygen 0%, 15%, 18%, 21%

Injection pressure 50, 100, 150 MPa

Institutions CMT, SNL, IFPEN

Fuels
Density 

[kg/m3]
CN

D2 (No. 2 diesel) 843 46

JC (JP-8) 812 38

JW (World Average 

Jet A Blend)
806 46

JS (Fischer-Tropsch

Fuel)
755.9 62

JP (Coal-Derived

Fuel)
870.2 34

SR (Surrogate Fuel) 778.9 70

SME (soy ethyl ester) 877 51

nC12 750 80

PRF0 - -

PRF20 - -

PRF40 - -

PRF60 - -

PRF80 - -

PRF100 - -

B5 (5% esters) 833 53.1

JetA1 812 45.6

JetA1-surr.v1 - -

JetA1-surr.v2 - -

E5 (5% ethanol) 746 17

n-dodecane 745 73

G15 800 108

G33 835 110

G50 869 112

G50A 859 88

MD (Methyl 

decanoate)
871 48

15% O2-900 K-22.8 kg/m3 -150 MPa 

Overview of Spray Fuel Effect Characterization

0% O2-900 K-22.8 kg/m3 -150 MPa 
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Fuel type Fuels Fuel details
Density 

[kg/m3]
CN/DCN

LHV 

[MJ/kg]

C/H mass 

ratio

Aromatics 

volume %

Boiling temp. 

[oC]

Kinematic 

viscosity (40oC)

PRF fuel

PRF0 100% n-heptane, 0% iso-octane 684 55 44.6 5.25 0 98 0.51

PRF20 80% n-heptane, 20% iso-octane 685 46 44.5 5.27 0 99 0.54

PRF40 60% n-heptane, 40% iso-octane 686 38 44.5 5.29 0 99 0.57

PRF60 40% n-heptane, 60% iso-octane 688 29 44.5 5.30 0 99 0.59

PRF80 20% n-heptane, 80% iso-octane 689 21 44.5 5.32 0 99 0.62

PRF100 0% n-heptane, 100% iso-octane 690 13 44.4 5.33 0 99 0.65

Gasoline fuel E5 European standard gasoline containing 5% of ethanol 746 17 42.8 - - 27-225 -

Jet fuel

JC (JP-8)

a low cetane number fuel that can also be used to
assess the use of aviation fuel using diesel engine hardware at

diesel engine condition
812 38 43.2 6.19 11 266 ~1.4

JW

an equal blend of five Jet-A fuel samples
from different U.S. manufacturers, and with the same cetane

number as D2
806 46 43.2 6.19 19 274 -

JS

a Fischer-Tropsch fuel characterized
as fuel with minimal aromatics (0.4%) and high cetane

number
756 62 44.1 5.49 0.4 276 -

JP

a coal-derived fuel, a low cetane number
fuel with low 1.9% aromatics but high (>90%) cycloparaffinic

content
870 34 42.8 6.58 1.9 270 -

JetA1 European standard Jet fuel 812 46 43.5 - - 187-300 -

JetA1-surr.v1 51.3% n-decane, 19.8% iso-octane, 28.9% n-propylbenz. 760 48 43.4 6.10 - 99-174 0.89

JetA1-surr.v2 47.5% n-decane, 17.6% iso-octane, 35.0% n-propylbenz. 770 46 43.3 6.27 - 99-174 0.89

Diesel fuel

D2 (No. 2 diesel) an emissions-certification fuel with a cetane number of 46 and 27% aromatics 843 46 42.9 6.53 27 350 2.35

SR
a surrogate fuel, a mixture

of 23% m-xylene (aromatics) and 77% n-dodecane
779 70 43.3 5.96 23 216 -

SME soy ethyl ester 877 51 37.4 6.48 0 - 3.98

nC12 (SNL) normal dodecane 752 87 44.2 5.54 0 216 1.5

B5
European standard Diesel fuel with

5% esters composition
833 53 42.5 - - 187-343 -

n-dodecane (IFP) normal dodecane 745 73 46.5 5.54 0 216 1.5

G15 Three fuels were blends of tri(propylene glycol) monomethyl
ether (TPGME) and n-hexadecane, identified as G15, G33 and

G50 the last two digits indicating the percentage of
TPGME in the blend, by volume

800 108 41.5 5.63 - 287 3.81

G33 835 110 38.5 5.60 - 287 4.21

G50 869 112 35.8 5.57 - 287 4.59

G50A 

Aromatic hydrocarbon, a
50/50 volume percent blend of TPGME and a diesel surrogate

fuel, the latter composed of 77 % n-dodecane and 23 %
m-xylene by volume.

859 88 35.5 6.25 - 287 3.43

MD (Methyl 

decanoate)

A different oxygenate chemical structure and was a surrogate for
traditional biodiesel fuel

871 48 37.5 - - 224 -

Higher Density
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Experimental Results - Liquid Length vs. Temp

0% O2 - 22.8 kg/m3 - 150 MPa 

Higher density generally leads to longer liquid 

length:

✓ PRF < Gasoline < Jet < Diesel

✓ PRFs show shorter LL, while D2 and B5 

have a longer LL 

PRF: green

Gasoline: blue

Jet: red

Diesel: black
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• A strong correlation is observed between:

✓ LL and fuel density

✓ LL and boiling temperature

PRF: green

Gasoline: blue

Jet: red

Diesel: black

Experimental Results - Liquid Length Correlation

0% O2 - 22.8 kg/m3 - 150 MPa – 900K 0% O2 - 22.8 kg/m3 - 150 MPa – 900K 
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• Viscosity seems to correlate with LL well

• Heat of vaporization correlation is not expected

• A sensitivity analysis would be useful to differentiate the relevant importance of all 

fuel properties

PRF: green

Gasoline: blue

Jet: red

Diesel: black

0% O2 - 22.8 kg/m3 - 150 MPa – 900K 

Experimental Results - Liquid Length Correlation

0% O2 - 22.8 kg/m3 - 150 MPa – 900K 
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900 K

PRF: green

Gasoline: blue

Jet: red

Diesel: black

Experimental Results – Vapor Penetration Length

0% O2 - 22.8 kg/m3 - 150 MPa – 900K 

• Higher density generally leads to longer vapor penetration

✓ SR is an outlier



0-15% O2 - 22.8 kg/m3 - 150 MPa – 900K 
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• Viscosity effect on liquid length doesn’t reflect on vapor penetration length

• Faster penetration of PRF0 due to higher CN – dilatation effect at reacting conditions

✓ Higher CN leads to longer penetration

0-15% O2 - 22.8 kg/m3 - 150 MPa – 900K 0-15% O2 - 22.8 kg/m3 - 150 MPa – 900K 

Experimental Results – Reacting Spray Penetration Length

Fuel type Fuels Fuel details Density [kg/m3] CN/DCN LHV [MJ/kg]
C/H mass 

ratio

Aromatics 

volume %

Boiling temp. 

[oC]

Kinematic 

viscosity (40oC)

PRF fuel

PRF0 100% n-heptane, 0% iso-octane 684 55 44.6 5.25 0 98 0.51

PRF20 80% n-heptane, 20% iso-octane 685 46 44.5 5.27 0 99 0.54

PRF40 60% n-heptane, 40% iso-octane 686 38 44.5 5.29 0 99 0.57

PRF60 40% n-heptane, 60% iso-octane 688 29 44.5 5.30 0 99 0.59

PRF80 20% n-heptane, 80% iso-octane 689 21 44.5 5.32 0 99 0.62

PRF100 0% n-heptane, 100% iso-octane 690 13 44.4 5.33 0 99 0.65
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• Higher CN generally results in shorter ID and LOLPRF: green

Gasoline: blue

Jet: red

Diesel: black

Experimental Results – ID/LOL vs. Temp

15% O2 - 22.8 kg/m3 - 150 MPa  
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• A strong negative correlation is observed between ID/LOL and CN

• PRF80 seems an outlier

PRF: green

Gasoline: blue

Jet: red

Diesel: black

15% O2 - 22.8 kg/m3 - 150 MPa – 900 K 

Experimental Results – ID/LOL vs. CN
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• A negative correlation is observed between LOL / ID and CN

• E5 is an outlier on ID

PRF: green

Gasoline: blue

Jet: red

Diesel: black

Experimental Results – ID/LOL vs. CN

15% O2 - 22.8 kg/m3 - 150 MPa – 1000 K 
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• A strong positive correlation is observed between LOL and ID with various fuelsPRF: green

Gasoline: blue

Jet: red

Diesel: black

Experimental Results – LOL vs. ID

15% O2 - 22.8 kg/m3 - 150 MPa – 900 K 15% O2 - 22.8 kg/m3 - 150 MPa – 1000 K 
15% O2 - 22.8 kg/m3 - 150 MPa – 900/1000 K 
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Experimental Results – Soot

At Tamb. = 1000 K, B5 (diesel fuel) forms more soot

✓ B5 (53)  > JetA1 (46) > n-dodecane (73) > E5 (17)

✓ LOL, ID, fuel oxygen ratio, and aromatic content, 

affect the soot formation

PRF: green

Gasoline: blue

Jet: red

Diesel: black

15% O2 - 22.8 kg/m3 - 150 MPa – 1000 K 

Manin et al., SAE Int. J. Fuels Lubr. 2014.



Summary

• Liquid length:

✓ Higher density, boiling temperature and viscosity generally lead to longer liquid length, but 

their relevant importance needs to be further investigated. 

• Vapor penetration length:

✓ Higher density generally leads to longer vapor penetration

✓ Viscosity doesn’t seem to have any effect

✓ Higher CN leads to longer spray penetration at reacting conditions

• Ignition delay and lift-off length

✓ Higher CN generally leads to shorter ID and LOL

✓ Strong negative correlations between ID/LOL and CN – PRF80 and E5 are outliers

✓ Strong positive correlation between LOL and ID was observed for a wide range of fuels

• Soot is affected by CN, fuel oxygen and aromatic contents etc. 
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Relevant Studies on Spray Fuel Effect
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✓ Tang, M., Pei, Y., Zhang, Y., Tzanetakis, T., Traver, M., Cleary, D.J., Quan, S., Naber, J., Lee, S.Y., “Development of 

a Transient Spray Cone Angle Correlation for CFD Simulations at Diesel Engine Conditions”, SAE Paper, 2018-01-

0304.

✓ Torelli, R., Matusik, K.E., Nelli, K.C., Kastengren, A.L., Powell, C.F., Som, S., Pei, Y., Tzanetakis, T., Zhang, Y., 

Traver, M., Cleary, D.J., " Evaluation of Shot-to-Shot In-Nozzle Flow Variations in a Heavy-Duty Diesel Injector 

Using Real Nozzle Geometry“, SAE Int. J. Fuels Lubs, 2018.

✓ Torelli, R., Sforzo, B., Matusik, K.E., Kastengren, A.L., Powell, C.F., Som, S., Pei, Y., Zhang, Y., Traver, M., Cleary, 

D.J., “Investigation of Shot-to-Shot Variability during Short Injections”, ICLASS, Chicago, 2018.

✓ Torelli, R., Matusik, K.E., Sforzo, B., Kastengren, A.L., Powell, C.F., Som, S., Pei, Y., Traver, M., " In-Nozzle 

Cavitation-Induced Orifice-to-Orifice Variations Using Real Injector Geometry and Gaoline-Like Fuels“, International 

Symposium on Cavitation, 2018.

✓ Pei, Y., Torelli, R., Tzanetakis, T., Zhang, Y., Traver, M., Cleary, D.J., Som, S., “Modeling a Gasoline Spray under 

Heavy-Duty Diesel Engine Conditions”, ASME ICEF 2017-3530, Oct. 15-18, 2017, Seattle, WA, USA. 

✓ Tang, M., Pei, Y., Zhang, Y., Traver, M., Cleary, D.J., Luo, Z., Naber, J., Lee, S.Y., “Numerical Investigation of Fuel 

Effects on Soot Emissions at Heavy-Duty Diesel Engine Conditions”, ASME-ICEF2018-9696, 2018, San Diego, CA.

Literature Referred
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Injector and Fuel Specifications

Injector at Aramco ECN Spray D

Outlet Diameter (µm) 176 180

K-factor 1.8 1.5

Cd (Re = 12,000) 0.94 N/A

Description
Central axis, single-hole, solenoid 

driven, hydraulically lifted needle

Property Units ULSD - Diesel RON60 Gasoline

IBP ⁰C 167 41

T50 ⁰C 257 67

FBP ⁰C 344 134

Density at 15.6 ⁰C g/mL 0.845 0.710

Kinematic Viscosity cSt 2.49 0.58

Aromatics Vol% 27.7 6.7

Olefins Vol% 1.8 0.4

Saturates Vol% 70.5 92.9

Sulfur ppm 3.9 11.9

H/C Ratio -- 1.79 2.11

Cetane Number (CN) -- 44.2 33.9

AKI -- n/a 56.8

Lower Heating Value MJ/kg 42.87 44.15
20
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* Tang, M., Pei, Y.*, Zhang, Y., Tzanetakis, T., Traver, M., Cleary, D.J., Quan, S., Naber, J., Lee, S.Y., SAE Paper, 2018-01-0304.

Fuel Effect on Spray Cone Angle
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0.2 ms, Constant Angle
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Soot emissions in enginesMixing fields in spray

Vapor penetration in spray
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Have our spray models considered the transient cone angle?



• Lower density gasoline fuel has a wider spray cone 

angle, leading to shorter vapor penetration

• Spray cone angle accounted for fuel effects is 

necessary

Fuel Effect on Spray Cone Angle

0% O2 – 5 MPa – 150 MPa – 324 K
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Have our spray models considered the fuel effect on transient cone angle?



• Different liquid length trend for diesel and 

gasoline at different ambient temperature

• Lagrangian-type of spray models can 

capture the interesting behavior – consistent 

model setup only with different fuel physical 

properties.

1Pei, Y., Torelli, R., Tzanetakis, T., Zhang, Y., Traver, M., Cleary, D.J., Som, S., ASME-ICEF2017-3530, Seattle, WA, 2017. 

Fuel Effect on Vaporizing Spray

0% O2 – 6 MPa - 150 MPa 
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Is it a coincidence? 



Fuel Effect on Ignition Delay

15% O2 – 6 MPa – 150 MPa • Difference becomes smaller at higher ambient 

temperatures

• TRF chemical kinetic model from Wang et al. 

CnF 2015 is capable of capturing both fuels

✓ ULSD – n-heptane

✓ RON60 Gasoline – n-heptane and iso-octane

• LES compared to RANS:

✓ Shorter ID at lower ambient temperature 

✓ Similar ID at higher ambient temperature

• Suggesting TCI is more important for low CN 

fuels or for low reactive conditions that have a 

longer ID
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Are the chemical kinetic and combustion models 

good enough to capture the fuel sensitivity?



Fuel Effect on Lift-Off Length

15% O2 – 6 MPa – 150 MPa

• With a well-mixed combustion model and a 

TRF mechanism, the sensitivity on LOL is 

not captured

• Chemical mechanism certainly plays a role

• A LES model improves the predictions 

suggesting a TCI model might be helpful

25

Are the chemical kinetic and combustion models 

good enough to capture the fuel sensitivity?



* Tang, M., Pei, Y., Zhang, Y., Traver, M., Cleary, D.J., Luo, Z., Naber, J., Lee, S.Y., ASME-ICEF2018-9696, 2018, San Diego, CA.

Soot lift-off lengths and lift-off lengths

Fuel Effect on Soot

Experimental natural luminosity and line-of-sight integrated 

soot field from CFD*

• Much lower soot for gasoline 

compared to diesel

• LES+Hiroyasu might be able to 

reproduce soot cloud

• Quantitatively, a detailed soot model 

performs better in terms of soot lift-

off length prediction

15% O2 – 6 MPa – 150 MPa – 1000 K
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Can soot models capture the fuel sensitivity?



• Diesel lift slope slightly shallower

• Diesel wobbles throughout injection

Lift profile

Fuel Effect on Injector Needle Motion

A HD 8-hole injector measured at Argonne APS by Chris Powell
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Radial profile



Fuel Effect on Needle Radial Motion

• Fuel physical properties has a significant effect on needle radial motion
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1000 bar

Fuel Effect on Mass Flow Rate

• Radial motion is necessary to realistically examine the flow behavior

• Much higher orifice-to-orifice variation for gasoline

Diesel Gasoline
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1000 bar

Fuel Effect on Flow Structure

• More cavitation for gasoline

• A jet-like structure for gasoline due to needle wobble motion

Diesel Gasoline

Diesel Gasoline

Image from Roberto Torelli at Argonne
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Diesel Gasoline

• Plume-to-plume differences in liquid and vapor penetration 

• Wider spreading angles at the beginning and end of the injection

Fuel Effect on Plume-to-Plume Variability

Animation from Roberto Torelli at Argonne
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Summary

• Spray

✓ Lighter fuel has a wider spray cone angle and shorter vapor penetration – spray cone 

angle needs to be properly accounted for

✓ Gasoline has a much shorter liquid length compared to diesel – Lagrangian-type of spray 

models seem doing well

✓ Ignition delay could be properly captured – TCI more important for longer ID

✓ Lift-off length prediction is more challenging

✓ Detailed soot model performs better

• In-nozzle flow:

✓ Fuel physical properties have effect on needle lift and radial motion

✓ Needle radial motion is necessary for realistic flow structure prediction

✓ Higher plume-to-plume variation and cavitation for gasoline
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What would be a realistic “Fuel” variation for ECN7?

• A PRF blend seems a good option:

✓ Simple, but vastly different to n-dodecane

❖ Physical properties on light-end

❖ Chemical properties can be tailored

✓ Chemical mechanism is readily available

✓ … 

• ECN7 fuel effect planning – PRF blends on Spray A, B, C, D
✓ Experiments:

❖ CMT, Spray A – 2012

❖ SNL, Spray A – 2018

❖ UNSW, Spray A – 2019

❖ …

✓ Simulations:

❖ UNSW - soon

❖ Aramco – Detroit – in progress

❖ …
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Yuanjiang Pei 

(yuanjiang.pei@aramcoservices.com)



Feedback and Future Directions

• Feedback:

✓ Different fuel blends – challenge chemistry, TRF, TRF-E

✓ Measurement techniques revisit to be consistent

✓ Empirical correlations revisit  based on the wide range of fuels examined

✓ Work towards experiments and understanding real world fuels

✓ Broad topic of understanding fuel effects, methods, and related towards predictive soot 

modeling

• Future direction:

✓ PRF – as a starting point

✓ Combination of PRF, TRF, TRF-E

✓ Real world fuels

✓ Oxygenated fuels
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