Comparison of Spray C & D reacting experimental data

IFP - SNL - CAT - TU/e

Noud Maes*, Scott A. Skeen, Michele Bardi, Russell P. Fitzgerald, Louis-Marie Malbec, Gilles Bruneaux, Lyle M. Pickett, Koji Yasutomi, Kenth Svensson, Glen Martin, ...

n.c.j.maes@tue.nl

Particular Structure Contracting Technische Universiteit Eindhoven University of Technology

Where innovation starts

TU

Content

- Recap: experimental comparison of heavy-duty sprays in the ECN
 - Spray C(avitating) & Spray D
- Combustion indicators
- Analyzing soot for large-orifice injectors
- An alternative soot analysis
- Why we can't say that Spray C produces more soot than Spray D

~210 µm

Heavy-duty in the ECN → Spray C(avitating) & Spray D

Several publications by CMT and SNL;

- Payri 2016 (Fuel), Payri 2016 & Gimeno 2016 (Energy conversion and management), Pastor 2018 (SAE), Westlye 2016 (SAE), Daly 2018 (SAE), (+ geometries! Matusik 2018 (IJER))
- Whats new? \rightarrow Characterization & comparison with T-variations at IFP, SNL & CAT
 - Spray & liquid pen., combustion indicators (pressure & OH*), and soot!

	Sandia	Caterpillar	IFP	-
Injectors	C037 & D134	C037 & D134	C003 & D135	-
Injector driver	Genotec	Labview driven	EFS IPoD	
Mass flow $[g/s]^a$	$10.10 \ \& \ 11.95$	$10.10 \ \& \ 11.95$	10.26 & 11.49	
Orifice diameter $[\mu m]^a$	208 & 191	208 & 191	212 & 190	Fa
Hydraulic delay $[\mu s]^b$	3 61 & 380	400	440	· Or refe
Light source [nm]	850 - LED	623 - LED	810 - Laser	orerence
Extinction coefficient k_e [-]	5.0	7.2	5.5	6
Filtering [nm]	OD2.3, 850 ± 5	OD1.8, 623 ± 5	OD2, 810 ± 2	
Camera	Phantom V2512	Phantom V2512	Photron SA-Z	
Maximum FOV [mm]	70	73	67	

Table 1: Fuel injection equipment details and soot extinction system features for experiments performed at IFP, Sandia and Caterpillar. Double values, when presented, represent independent entries for Spray C and Spray D.

^a Values from Payri et al. [36].

^b Values do not vary between injectors for identical injector driver and driver settings according to Payri et al. [36].

Combustion indicators

- LOL; decent agreement
 - ~3 mm shorter due to increased $\boldsymbol{\theta}$
- Ignition delay shorter at IFP
 - More sensitive optical system?

kPa

ssure

- Pressure-based ID:
 - Really similar, if anything;
 - SNL slightly shorter than IFP!
 - Note evap. cooling resemblance

Analyzing soot for large-orifice injectors

Analyzing soot for large-orifice injectors

- In the paper, more details on how soot depends on volume
- (Thanks to large CAT windows!)
- → easy to extrapolate data over a relatively large range

An alternative soot analysis

- SNL short injections
 - 1200-K ambient, 50-100-150 MPa inj.
 - Fuel mass matched by Δp!

- Spray C produces more soot
 - Low injection pressure;
 - Later onset, slow burn-out
 - Higher peak-soot

So Spray C produces more soot?

- Spray D starts to produce more soot at lower temperatures...
- Lift-off region of Spray D is fuel rich compared to Spray C at 850 K!
- Improved mixing for Spray C is only advantageous at low reactivity!

Questions? – n.c.j.maes@tue.nl

