

LES of Spray A using the Hybrid Method of Moments Soot Model

<u>M. Davidovic</u>, M.Bode, L. Cai, H. Pitsch Institute for Combustion Technology RWTH Aachen University

Cluster of Excellence – The Fuel Science Center

- Vision & Mission
 - Closed carbon cycle
 - Near-to-zero pollutant emissions
- Synthetic fuels from
 - Renewable electricity
 - Alternative carbon feedstocks
 - Biomass
- Funding
 - 7 Years (2019-2025)
 - > 100 Ph.D. Students (8 disciplines)
- Aim of this sub-project: Understanding fuel effects on combustion and pollutant formation using detailed chemistry combustion and pollutant formation LES models

Outline

- I. Motivation
- 2. Lagrangian Spray Combustion Model
- 3. HMOM Soot Model
- 4. Results
- Mixing field comparison (inert Spray A)
- Ignition and flame characteristics (OH/CH₂O)
- Soot results
- 5. Summary and Outlook

Spray Combustion LES Model

Liquid phase

- Lagrangian Particle Tracking
 - Initial droplet size imposed from resolved interface simulations
 - Sub-models for
 - Secondary breakup (KHRT)
 - Drag
 - Evaporation (Bellan)
- Interaction with gas phase via source terms

Lagrangian particles

Gas phase

- Fully compressible flow solver
- Ideal gas law
- Dynamic Smagorinsky SGS model
- Additional scalar transport equations solved for combustion model

Mixture fraction field on center plane

Chemistry

- Multiple Representative Interactive Flamelet (MRIF) model
- Chemistry parameterized over mixture fraction (ID)
- Presumed FDF subfilter closure
- Hybrid Method Of Moments (HMOM) soot model

0.2 0.4 0.6 0.8 1 Mixture fraction

4

Statistical Soot Modeling

- Particles cannot be tracked individually
 - Solving a distribution function instead
 - Number Density Function (NDF)
 - Usually bimodal due to persistent nucleation
- NDF evolution is governed by Population Balance Equation (PBE)

$$\frac{\partial N_i}{\partial t} + \nabla \cdot (\mathbf{u}N_i) - \nabla \cdot \left(0.55\frac{\nu}{T}\nabla T N_i\right) = \dot{N}_i$$

- Source terms include subprocesses^[1]:
 - Nucleation and Condensation of PAH
 - Hydrogen abstraction carbon addition (HACA)
 - Coagulation
 - Oxidation

5

Zhao et al. Combust. Flame, 133 (2003) 173 -188

Hybrid Method Of Moments^[11]

- Particles are 3D chains composed of small spherical primary particles
- > Multi-variate statistical models
 - Volume and surface area used to describe particles
- Solving statistical Moments of the NDF

 $M_{x,y} = \sum_{i} V_i^x S_i^y N_i$

6

 \succ Source terms unclosed \rightarrow Assumptions needed for NDF

$$M_{x,y}^{\text{HMOM}} = N_0 V_0^x S_0^y + \exp\left(\sum_{r=0}^R \sum_{k=0}^r a_{r,k} x^k y^{r-k}\right)$$
$$M_{x,y} = N_0 V_0^x S_0^y + N_L V_L^x S_L^y$$

Balthasar & Frenklach , Combust. Flame, 140 (2005) 130-145

Inert Results (Spray A – 60bar / 1500 bar) - #210667

Numerical Methods and Setup	
CFD Code	CIAO (In-house)
Solver	Fully compressible
Time integration CFD	5-stage LDD-RK
Spatial schemes CFD	CD4 / WENO5
Minimum grid spacing	80 µm
Number of CFD cells	50e6
Time step size (CFD)	20 ns
Number of parcels	~600e3

Reactive Results I/III (Spray A – 60bar / 1500 bar / 15% O₂) - #210370

Combustion Model	
Dodecane chemistry	Cai CNF 2016
PAH chemistry	Blanquart CNF 2009a
NO _X chemistry	GRI3.0
Soot/gas phase interaction chemistry	Blanquart CNF 2009b
Total number of species	822
Total number of reactions	4611
Number of flamelets	40

Institute for Combustion Technology | M. Davidovic | ECN 6.13

Experiments: S.A. Skeen, J. Manin, L.M. Pickett: Simultaneous Formaldehyde PLIF and High-Speed Schlieren Imaging for Visualization in High-Pressure Spray Flames, Proceedings of the Combustion Institute, Volume 35, Issue 3, 2015, Pages 3167-3174

9

Reactive Results II/III (Spray A – 60bar / 1500 bar / 15% O₂)

- Ignition delay and flame lift-off in good agreement
 - Ignition delay 0.40 ms (2% max OH)
 - Flame lift-off 15.2 mm (2% max OH)
- Formaldehyde field show similar features as high-speed PLIF data (Hyung Sub Sim ECN6.12)

OH and CH_2O in center plane

Reactive Results III/III (Spray A – 60bar / 1500 bar / 15% O₂)

- Soot onset is in good agreement with experiments
- Soot mass is underpredicted

Experimental values from S. Skeen et al. SAE, 2016

Summary & Outlook

Summary

- The Lagrangian spray combustion model has been coupled to a bivariate statistical soot model
- The model has been applied to Spray A yielding good results in terms of spray and combustion characteristics
- However, the soot mass is underpredicted

Outlook

- Reaction path ways have been recorded throughout the LES (All 4611 reactions)
 - PAH and soot formation pathways have been analyzed (submitted to CS2020)
- Multiple realization of Spray A will be performed
- Trying to run Spray D until ECN7

Thank you for your attention!

M. Davidovic, M. Bode, L. Cai, H. Pitsch

Institute for Combustion Technology **RWTH Aachen University**

http://www.itv.rwth-aachen.de

Acknowledgements

FSC

Funding from the Cluster of **Excellence** "The Fuel Science Center"

Computing time at HLRS under the grant number **GCS-MRES**

