Hydrogen Spray Simulation with a Hollow-Cone Injector

Presenter:

Abdullah Zaihi

PhD candidate

Involved Scientists:

Prof. Hong Im
Prof. Bill RobertsSupervisorsKevin Moreno-Cabezas
Dr. Xinlei LiuCFD collaboratorsBassam Aljohani
Dr. Moez Ben HouidiExperimental team

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

Outline

- Background and Research Objective
- Experimental and Computational Setups
- Computational Validations
 - Qualitative Comparison
 - H₂ Jet Area and Penetration Length
 - Impact of Needle Lift
 - Shock Wave Prediction
 - Mass Flow Rate
- Conclusions

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

Clean Combustion Research Center

Background

Hydrogen is a promising green fuel for future transportation. The **direct-injection** hydrogenfueled internal combustion engine (DI-H₂ ICE) has been viewed as one of the efficient transportation solutions, especially for heavy-duty applications.

Advantages of DI-H₂ in ICEs

- High volumetric efficiency and power density.
- No backfire and pre-ignition.
- High engine combustion efficiency.

Challenges

- High-pressure supersonic injection.
- Rapid fuel-air mixing in a confined chamber.
- Few usable measured data for high-fidelity modeling.

للعلوم والتقنية King Abdullah University of Science and Technology

ا جامعة الملك عبدالله Clean Combustion **Research Center**

¹Int. J. Hydrogen Energy 45 (2020) 32562-32578.

Research Objective

Work in Progress

- 1. Configure numerical models to adequately predict the H₂ jet behavior at different pressures (subcritical and supercritical).
- 2. Resolve the real injector geometry with a proper mesh to effectively and efficiently perform simulations.
- 3. Analyze the H_2 jet dynamics and identify the optimum solution to obtain the expected fuel-air mixing distribution.
- 4. Investigate the effects of nozzle geometry variation, inlet and ambient boundary conditions, and jet/wall interaction on the jet evolution process.

Constant Volume Chamber in KAUST

High-Pressure CVC

HDEV4 fixture

Z-type schlieren; Pulsed LED; 30 and 100 K fps

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology Test matrix

Parameters	Value
Hydrogen purity	> 99.98%
Hydrogen temperature [K]	298
Injection pressure [bar]	10, 20, 30, 40, and 50
Ambient pressure [bar]	1, 5, and 10
Ambient density [kg/m ³]	1.13, 5.65, and 11.32
Ambient temperature [K]	298
Injection duration [ms]	1-5

Ambient content: N_2 at 2bar Injected fuel: H_2 at 11bar

Bosch Hollow-Cone Injector

	Technical features	
	Needle actuation	Direct
	Spray angle	85° ± 5°
	Shot-to-shot scatter	± 1°
	Back-pressure dependence	< 4%
	Resistance to carbon buildup	< 3°
	Droplet size SMD (Sauter Mean Diameter)	10–15 µm
	Penetration	< 30 mm
	System pressure	20 MPa
_	Needle lift	≤ 35 µm
	Dynamic flow range q_{dyn}	34.5 mg/lift @ t _i = 1 ms
	Partial-lift capability	≥ 10–35 µm
	Injection time	70-5,000 µs
	Multiple injection	≤ 5 injections/cycle
	Interval time	≥ 50 µs
	Metering range	0.5-150 mg/injection

Half domain

60° sector

1 µm resolution

X-Ray tomography from Prof. Lubineau and Hassan Al-kady (PhD student).

PSE Divion, Mechanics of Composites for Energy and Mobility Laboratory

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

Clean Combustion

6

Mesh Details and Boundary Conditions

Clean Combustion

Research Center

جامعة الملك عبدالله

cience and Technology

للعلوم والتقنية King Abdullah University of Velocity 0.03 - 0.01 m/s

- CONVERGE 3.1 for CFD modeling.
- Turbulence model: RNG k- ε .

7

Qualitative Comparison – Jet Evolution

Jet Penetration and Area

- جامعة الملك عبدالله العلوم والتقنية King Abdullah University of Science and Technology
- Jet penetrations could be reasonably reproduced with a very fine
 AMR velocity sub-grid criterion.
 - Jet area still existed a large discrepancy that should resolved.

Impact of Needle Lift

• Penetration increases with a higher needle lift.

العلاك عبد الله عبد الملك عبد الله عبد الملك عبد الله العلام والتقنية (Clean Combustion King Abdullah University of Science and Technology

Shock Wave Observation

Mass Flow Rate and Fuel Consumption

- Initial pressure difference between two regions led to shock, which induced pressure fluctuation on the inlet boundary.
- جامعة الملك عبد الله للعلوم والتقنية King Abdullah University of Seience and Technology
- Maybe more data from experiment needed to ensure more accurate slope.

Conclusions

- 1. For H₂ jet simulation using a hollow-cone injector, a precisely-measured nozzle geometry is significant in reproducing the measured jet metrics.
- 2. The predicted jet penetration is very sensitive to the mesh setup, especially near the nozzle exit region. A finer AMR sub-grid criterion resulted in the better agreement with measured data.
- 3. Injection pressure, needle lift, and start of injection timing are three of the most significant parameters that affect the prediction of jet penetration.
- 4. The outflow boundary with a fixed pressure condition yielded shock wave reflection, which should be resolved by properly setting up the outlet or wall boundary condition.

THANK YOU!

Question?

Email: abdullah.zaihi@kaust.edu.sa

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

| Clean Combustion | Research Center