EFC Topic 4.2

Simulation-to-Simulation Benchmarking (LES, RANS)

Presented by Cecile PERA (IFPEN)

Objectives of the 4.2

Summarize: some guidelines for engine simulations

UNIVERSITĂT DUISBURG ESSEN

ECN

Introduction

Topic 4.2: Engine Simulation

Contributions

1. Meshing strategy

Cecile Pera, <u>cecile.pera@ifpen.fr</u> Tommaso Lucchini, <u>tommaso.lucchini@polimi.it</u> Andreas Kempf, <u>andreas.kempf@uni-due.de</u> Kelly Senecal, <u>senecal@convergecfd.com</u>

2. Boundary conditions and methodology

Cecile Pera, <u>cecile.pera@ifpen.fr</u> Tommaso Lucchini, <u>tommaso.lucchini@polimi.it</u> Andreas Kempf, <u>andreas.kempf@uni-due.de</u> Stefano Fontanesi, <u>stefano.fontanesi@unimore.it</u>

3. Modeling issues

Cecile Pera, <u>cecile.pera@ifpen.fr</u> Andreas Kempf, <u>andreas.kempf@uni-due.de</u> Kelly Senecal, <u>senecal@convergecfd.com</u> Satbir Singh, <u>satbirs@andrew.cmu.edu</u> AVBP, IFP-C3D Lib-ICE OpenFOAM, PsiPhi Converge

AVBP, IFP-C3D Lib-ICE OpenFOAM, PsiPhi star-cd

AVBP, IFP-C3D OpenFOAM, PsiPhi Converge

CMU

1. Meshing strategy

ECN 3.0

Meshing Issues: Body Conformal

- Mesh deformation due to valve
 & piston motion
- To restrict grid deformation
 while maintaining enough spatial resolution, interpolation is used
- An engine cycle is divided into multiple phases

Automatic Mesh Generation

ECN 3

- CFD solver: compressible, pressure based, RANS
- Automatic mesh generation (based on snappyHexMesh) + automatic mesh motion

Automatic Mesh Generation

Body Conformed moving grid (OpenFOAM)

- Mesh points move to comply with piston and valve motion
- Quality of the mesh reduces during grid movement
- Local mesh-refinement reduces amount of cells

Mesh of Darmstadt Engine, intake valve plane. 0.5 mm, (P. Janas)

SBURG

Immersed Boundary (PsiPhi, In-house)

- Cell with particle = solid
- No meshing required!
- The motion of the moving objects is governed by the background mesh
- No local grid refinement possible
 - Simplicity and efficiency for unstructured codes with less cells

Fluid cells of the Darmstadt engine (0.3 mm) and intake valve (big voxels are shown for the valve!), (T. Nguyen)

SBURG

Automated meshing

- No meshing time
- Adaptive Mesh Refinement (AMR)
 - No more guessing
- Orthogonal cells
- Easy to perform grid convergence studies

Topic 4.2: Engine Simulation

2. Boundary Conditions and Methodology

ECN 3

Multi-cycles LES

ECN 3.0

Energies nouvelles

Multi-cycles LES

ECN 3.0

LES / 1D coupling

- LES in the chamber and a part of intake and exhaust ducts
- Boundary condition definitions
 - P and T variations during engine cycle
- Initial states

E(CIN

Navier-Stokes Characteristic Boundary Conditions (NSCBC)

- A time-varying pressure imposed from measurements
 - Intake and exhaust ports
- Pressure from 1D acoustic simulations of manifolds
- Entire manifold system modeled (3D)
 - Simplify the boundary treatment
 - Increases computational time

In-cylinder pressure during the intake and the exhaust stroke, OpenFOAm, cold flow, 800 rpm, (P. Janas)

^oressure [bar]

Pressure [bar]

Boundary conditions (RANS TCC setup)

Mesh structure in the valve region

Unsteady boundary conditions at inlet and outlet boundaries

Topic 4.2: Engine Simulation

Boundary Conditions

April 4 & 5, 2014

ECN 3.0

LES / 1D coupling: acoustic

3. Modeling issues

ECN 3.0

- Case 2, which has less numerical diffusion than Case 1, results in an unsteady solution
 - Does not give an ensemble averaged flowfield, even when using a RANS turbulence model
 - A case was also run with very high resolution and 1st order upwinding, which resulted in vortex shedding, similar to Case 2
- The turbulence viscosity acts to destroy the smaller scales, but it also allows larger scales to exist, even if they are time-varying

Richards et al., ASME 2014

LES vs RANS

- High eddy viscosity in RANS-based models dampens non-linear velocity interactions (Rutland, IJER, 2011)
- LES models give better predictions of velocity fluctuations than RANS-based models (Liu and Haworth, Flow Turbulence Combust., 2011)
- LES predicted flow structure looks more like experimentally observed flow structure (Hu et al., SAE 2007-01-0163)

Simulations of Imperial College Engine (200 RPM)

Plots of Mean Velocity

- There is hardly any different between the non-eddy viscosity DST (Pomranning &Rutland) model and eddy-viscosity Vreman model (PoF, 2004)
- Predictions are almost same when no SGS model is used indicating that SGS model does not significantly contribute to the predictions

Simulations of Imperial College Engine (200 RPM)

Plots of Root-Mean-Square (RMS) Velocity

 LES models do not provide significantly different predictions of RMS velocity fluctuations either

Coupling between Numerical Errors and SGS Model

Compute derivative of
$$f(x) = e^{\iota kx}$$

Exact: $f'(x) = \iota k e^{\iota kx} = \iota k f(x)$
Numerical: $f'(x) = \iota \frac{\sin(2\pi n/N)}{\Delta_q} f(x) = \iota k' f(x)$

Since $k' \neq k$, we have discretization error

Coupling of Ig and k in LES

- As I'g is reduced errors shift to higher k
- Numerical errors can become larger than LES model contribution
- Not easy to separate and quantify errors
- Choice of Numerical Scheme is Important
 - Most state-of-the-art codes are second-order
 - May not be suitable for LES if numerical dissipation is used for stabilization

Mellon

ECN

Explicit Filtering to Decouple Errors from SGS Model

Apply an explicit filter width (Pf) which is larger than the grid spacing (Pg)

- Discretization errors are reduced as grid is refined (2g 2), but the effective LES resolution is kept the same (constant 2,)
 - Possible to obtain a grid-independent LES solution
 - Better tool for evaluating SGS models

Carnegie

Mellon University

Application of Explicit Filter LES (Channel Flow)

- Grid-independent LES solutions are obtained for mean streamwise velocity and RMS velocity fluctuations for all filter-to-grid ratios (FGR)
- 4th-order scheme implemented on Cartesian Grid with discrete filter functions. Difficult to use in engine applications

Carnegie

Mellon Universitv

Application of Explicit Filter LES (Channel Flow)

- Differential filter of Germano, Physics of Fluids, 1986
 - Implemented in second order finite volume code (Singh and You, JCP, 2011)
 - Allows filtering on arbitrary grids
 - Filter width is controlled by change coefficient (q)

$$\bar{\phi} - \frac{\partial}{\partial x_j} \left(q \frac{\partial \bar{\phi}}{\partial x_j} \right) = \phi$$

- SGS model of Singh et al., Physics of Fluids, 2012
 - Formulated to enforce Galilean invariance for explicit-filter LES equations
 - Closure using eddy-viscosity model of Vreman, Physics of Fluids, 2004

$$\tau_{ij} - \frac{1}{3}\delta_{ij}\tau_{kk} = (\bar{u}_i\bar{u}_j - \bar{\bar{u}}_i\bar{\bar{u}}_j) - 2\nu_t S_{ij}$$

Mellon

ECN 3

Application of Explicit Filter LES (Channel Flow)

- Streamwise mean velocity (left) and velocity fluctuations (right) are nearly grid independent for the two finer grids
- Differential filter can be applied in ICE simulations

ECN 3.

Carnegie

Mellon University

April 4 & 5, 2014

Spatial resolution

- Grid sensitivity studies with PsiPhi on a 0.3mm, 0.5mm, 1 mm grid
 - Good agreement among the simulations and experiment
- Multi-cycle simulations with OpenFOAM, (0.125 mm in the valve gap, 1 mm inside the cylinder, 2 mm inside the manifolds)

High-Resolution LES of the Darmstadt engine (0.3 mm) with PsiPhi , (T. Nguyen)

April 4 & 5, 2014

UNIVERSITĂT

DUISBURG

Spatial resolution

- From 1 to 10 M cells
- 0.1 mm: typical size around the valve seat
- 0.5 mm: typical mesh size in the cylinder
 - 0.2 mm: around the spark plug

Mesh size: 0.125 mm (valve region) to 2 mm (intake and exhaust ports).

Modeling of the crevice volume

- Large crevice volume between the piston-skirt and cylinder liner
 - Up to 15% of the top dead center volume (excluding piston expansion)
- Fresh air/fuel mixture trapped in crevice volume
 - 50% trapped at TDC is possible
 - Not available for combustion
- Crevice volume in simulation
 - Reduces the peak pressure by 10 bar

Engine grid with crevice volume, Darmstadt engine, (Janas/Nguyen)

Combustion: grid-convergent methodology

April 4 & 5, 2014

Turbulent Combustion Model: CFM-LES

FSD (Flame Surface Density) transport equation

Adaptation from RANS to LES [Richard et al., Proc. Combust. Inst. 2007]

ECN 3

Turbulent Combustion Model: ignition with ISSIM-LES^[1]

- ISSIM (Imposed Stretch Spark Ignition Model)
- Description of the electrical circuit
- Use of the FSD transport equation from spark timing to quenching

ISSIM-LES

temperature

546

temperature

432

546

660

660

774

774

318

318

432

- Account for local convection and wrinkling
- Simulate multiple-ignitions

Time = 2.50e-04s

30m/

Time =6.00e-04s

plug

[3] O. Colin and K. Truffin. Proc. Combust. Inst. 33(2) (2011)

Time =4.50e-04s

30m/

30m/s

AKTIMEuler Time = 4.50e-4s

plug

temperature

546

sigma (1/m)

500

250

750

660

774

1000

318

432

Conclusion

- Today, many engine codes exist with different approaches
- Work and development within ECN?
 - Comparison and Validation: Topic 4.3
 - Comparison between codes on reference ECN database?

Topic 4.2: Engine Simulation

Contributions

1. Meshing strategy

Cecile Pera, <u>cecile.pera@ifpen.fr</u> Tommaso Lucchini, <u>tommaso.lucchini@polimi.it</u> Andreas Kempf, <u>andreas.kempf@uni-due.de</u> Kelly Senecal, <u>senecal@convergecfd.com</u>

2. Boundary conditions and methodology

Cecile Pera, <u>cecile.pera@ifpen.fr</u> Tommaso Lucchini, <u>tommaso.lucchini@polimi.it</u> Andreas Kempf, <u>andreas.kempf@uni-due.de</u> Stefano Fontanesi, <u>stefano.fontanesi@unimore.it</u>

3. Modeling issues

Cecile Pera, <u>cecile.pera@ifpen.fr</u> Andreas Kempf, <u>andreas.kempf@uni-due.de</u> Kelly Senecal, <u>senecal@convergecfd.com</u> Satbir Singh, <u>satbirs@andrew.cmu.edu</u> AVBP, IFP-C3D Lib-ICE OpenFOAM, PsiPhi Converge

AVBP, IFP-C3D Lib-ICE OpenFOAM, PsiPhi star-cd

AVBP, IFP-C3D OpenFOAM, PsiPhi Converge

CMU

Please, come to the LES4ICE meeting

LES for Internal Combustion Engine Flows

Where: Rueil-Malmaison, France When: 4-5 December 2014

ECN 3

The AVBP code

E(CIN